Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Хаос и структура - Лосев Алексей Федорович - Страница 4


4
Изменить размер шрифта:

Наконец, интереснейшим способом рассмотрения математических учений является у Лосева вскрытие интуитивной основы этих учений. Лосев полагает, что раньше всяких формулировок у математика образуется некая смутная интуиция, принимающая иногда и очень ясные, раздельные формы, но всегда обладающая непосредственно наглядным и совершенно недискурсивным характером. Эта интуиция бесконечно богаче всяких формулировок, и она–то и есть .подлинное творчество математика. Тут Лосеву тоже придется столкнуться со стеной непонимания. Так как творцов в математике (как и везде) очень немного, остальные же представители этой науки только усваивают чужие истины и передают их другим, то мало кто согласится с Лосевым относительно этой интуиции. Не имеющие этих интуиций, конечно, должны будут возражать, а когда им Лосев на это ответит, что они не творцы истин, а только их передатчики другим, то это, конечно, обидно. Тут, однако, невозможно примирение. Те немногие намеки на глубины математического творчества, которые он делает в § [ ] и для которых он мог бы привести десятки подкрепляющих мест из классиков математики, конечно, будут квалифицированы как мистицизм. Но Лосев никогда не сможет согласиться, что математическое творчество есть само по себе сухая и рациональная схема, лишенная внутреннего пафоса, летающей интуиции, а также того поднимающего и волнующего восторга ума, когда этот ум созерцает числовую идею. Но я знаю, что это бывает именно так, в большой или малой форме. Для этой творческой интуиции, реальной так же, как таблица умножения, должна быть найдена своя логическая категория в общей системе философии числа. И не нужно укорять Лосева за то, что он хочет эту реальнейшую вещь зафиксировать принципиально и терминологически.

Изучая то, что содержится в математических руководствах, Лосев естественно находит только какие–то обрывки истины, на которых невозможно построить никакой философской теории. Чтобы понять философский смысл теоремы, ему приходится привлекать и многое такое, что вовсе не требуется для обычного употребления этих теорем; и он в конце концов наталкивается на то основное, первоначальное и чисто интуитивное, рационализацией чего явилась сама теорема. Тогда он подвергает эту найденную им интуицию уже философской рационализации, и вот в результате получается философский дублет для математической теоремы. Такой способ изучения математики никак нельзя назвать неинтересным, и тут многому можно поучиться. Достаточно указать на то, что учение Дедекинда о непрерывности имеет под собой, по учению Лосева, интуицию цветного поля, в котором один цвет незаметно переходит в другой, что Кантор в своем континууме имеет в виду непрерывность раздельного целого, например, непрерывность и цельность букета, в котором много цветов соединены в одно целое, что под интегралами Эйлера лежит «эстетическая идея» Канта, что под признаком трансцендентности числа у Лиувилля—шеллингианское учение о мировых потенциях, что современные теоретики множества воспитаны под влиянием импрессионистического физио–номизма, что изобретатели исчисления бесконечно малых Лейбниц и Ньютон воспринимали мир как чистую фугу и сонату, а Коши — как программную симфонию, Гильберт с вещами вроде неархимедовой геометрии или кривой Пеано — Гильберта — как футуристическую патологию, и т. д. и т. д.

Во всем этом много условного и, может быть, произвольного, но невозможно отрицать самого метода. Вместо абстрактных споров об «интуиционизме» и «формализме» тут яснейшим образом показано, где реально в математике интуиция и где рациональная форма. После этого упомянутые споры теряют всякое значение. После Лосева надо будет спорить иначе об этих вещах.

Интуиция, иррациональное, внутреннее, символ [7]и миф и, с другой стороны, рационализация, систематика, диалектика — вот между какими пределами движется философия Лосева. Я не раз была свидетельницей того, как эта интуиция с восторгом обреталась после длительных поисков и как она вновь отменялась после новых соображений. Так, философ один раз не в переносном, а в буквальном смысле затанцевал, когда мы после мучительных усилий напали на интуитивную картину взаимного движения вещественных и мнимых фокусов в кривых второго порядка при последовательном переходе их одна в другую. В другой раз Лосев забил себе в голову какую–то совершенно непонятную картину интегрирования между мнимыми пределами. И когда я скромно напомнила ему, что то же явление происходит и в криволинейных интегралах, то первой реакцией со стороны философа было классическое, но ничего не говорящее: «Тем хуже для криволинейных интегралов!» Однако недоразумение обнаружилось тотчас же, и философу пришлось кое–что изменить в «интуитивной» картине интегралов с комплексными переменными. Одну общую идею из этой области я сама подала ему еще в 1924 г., занимаясь в тот период аналитическими функциями. Но впоследствии я и сама была этому не рада, так как мне же и приходилось постоянно вносить расхолаживающую струю математических формул и теорем в эту неистовую философию, когда она становилась чересчур интуитивной или чересчур диалектичной.

Не нужно преувеличивать достижения этой многолетней работы Лосева, но не нужно ее и приуменьшать. Если скажут, что это не диалектика, или что это — метафизика, или что математика в этом не нуждается, или что это настолько мракобесный идеализм, что в нем и поучиться нечему, то все это, конечно, будет вздор. Что логический аппарат, пущенный тут автором в ход, не везде работает одинаково хорошо, что местами он, может быть, и совсем не годится, — это вполне возможно. Но важно, что начато большое дело и начато сильно, глубоко, уверенно, со вкусом. И никто не сможет никому воспрепятствовать начинать его еще по–новому, если этот первый почин не везде удовлетворителен.

29.1.1936 г.

ВВЕДЕНИЕ (ОБЩЕЕ РАЗДЕЛЕНИЕ НАУК О ЧИСЛЕ)

§ 1. Первая противоположность: чистая математика и математическое естествознание.

Всякая вещь и всякий предмет мысли есть прежде всего нечто само по себе сущее, а затем он есть нечто существующее в мысли и в отношении с прочим бытием. Разумеется, полная действительность вещи не та, которая свойственна ей в ее абстрактно–изолированном состоянии, но та, которая принадлежит ей в ее всестороннем взаимоотношении со всем прочим. Однако в целях уразумения действительности мы разделяем ее на отдельные, более или менее абстрактные моменты и изучаем их изолированно, с тем чтобы потом, во–первых, объединить их в целое, а, во–вторых, не просто объединить, а воссоздать ту их общую жизненную связь, из которой они были извлечены первоначально.

Отсюда, как бы мы ни думали, что идее принадлежит лишь абстрактное существование, и как бы ни верили в то, что только материальное существование есть полная действительность той или другой идеи, мы все же с самого начала поставлены перед абсолютной необходимостью понять число в его идее, в его сущности, в его первоначальном смысловом содержании. Потом мы узнаем, как эта идея претворяется в действительность, что сначала надо знать, что же такое само–то число по себе, в чем его сущность и чем оно существенно отличается от всего прочего. Так возникает основная антитеза идеи, смысла, существа числа и его явления, его осуществления, числа как отвлеченного понятия и числа как предметного явления,, антитеза чистой математики и математического естествознания.

§ 2. Число как факт духовной культуры.

Диалектическая философия знает, однако, ту сферу, где обе эти области совмещаются, с точки зрения которой обе они являются только абстракцией. Обычно думают, что чистая идея числа абстрактна, а вот число в природе, например т. н. законы природы, — это не есть абстракция, это есть сама действительность. С современной точки зрения такой взгляд на действительность, однако, совсем не может быть защищаем. Это для нас очень бедная, очень плоская действительность. Наша действительность— только историческая, и только в истории всякая идея достигает своей последней конкретности. Поэтому «число в природе» для нас никак не есть последняя реальность. Это условная, нетвердая и глубоко временная реальность, гораздо менее «реальная» для нас, чем т. н. природа. Не человек есть часть природы, а природа есть часть человека. Человек богаче, конкретнее, реальнее, живее и жизненнее природы. И только в истории, в человеке, идея и природа сливаются в живое единое; только тут, в человечестве, действительность становится конкретно ощутимой, творимой, жизненной. Поэтому историческая точка зрения на число — необходимое завершение учения о числе — и учения о смысле его чистой идеи, и учения о смысле его природно–материаль–ной осуществленное.