Вы читаете книгу
»Теорія та методика навчання математики, фізики, інформатики. Том-1»
Автор неизвестен
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
»Теорія та методика навчання математики, фізики, інформатики. Том-1» - Автор неизвестен - Страница 31
Одержане рівняння розв’язується відносно старшої похідної.
diff(u(x),x$2)=solve(convert(l,equality),diff(u(x),x$2));
Отже, дане ДР зведено до рівняння зі сталими коефіцієнтами
u''– 2 u'– 3 u= 0 .
В окремих випадках система Mapleможе знайти особливий розв’язок ДР. Наприклад, ввівши команду
dsolve(sqrt(1+diff(y(x),x)^2)+x*diff(y(x),x)=y(x),y(x));
одержуємо два розв’язки ДР, загальний та особливий.
За допомогою додаткової процедури expandспрощується вираз особливого розв’язку.
> x^2=expand((-sqrt(1-y^2)/(sqrt(1/(y^2))*y))^2);
Доцільно дати завдання для самостійної роботи: пояснити реакції системи Maple Vна виконання програм:
а) with(DEtools): sys:=diff(x(t),t)=3.-2*y(t),diff(y(t),t)=2*x(t)-2*t:
dsolve({sys},{y(t),x(t)});
б) with(DEtools): sys:=diff(x(t),t)=3-2*y(t),diff(y(t),t)=2*x(t)-2*t:
dsolve({sys,x(0)=-6,y(0)=7.},{y(t),x(t)});
Одним із важливих понять теорії диференціальних рівнянь є поняття крайової задачі. Особливість методики вивчення теми полягає в тому, що студенти відносно самостійно за допомогою систем комп’ютерної математики (DERIVE, Matlab і інших) знаходять спосіб виконання предметно-пізнавальної дії для одержання потрібних результатів (зв’язків, числових характеристик параметрів, закономірностей). Крайові задачі зустрічаються в теорії електронних кіл, теорії управління, хімічній кінетиці та інших галузях науки і техніки. Тому знайомство із задачами прикладного змісту переконує студентів у необхідності оволодіння методами розв’язування крайових задач для звичайного диференціального рівняння. Прикладом може бути задача про математичне моделювання робочого процесу вібротраспортуючого пристрою, яке зводиться до розв’язування відповідного диференціального рівняння
y''+a( t)( y') 2 +b( t) y=d( t),
де a( t), b( t), d( t) – функції, що характеризують робочий процес, узгодження процесів, які змінюються повільно, та збурень, які швидко згасають.
Завданням для індивідуальної роботи може бути інша задача. Знайти реакцію системи стеження радіолокатора на вплив, що задається функціями x( t) =Asin( ?t+?), x( t) =?+?t+?t 2, x( t) =?+?t+?t 2 +?t 3тощо, дослідити систему стеження на стійкість, якщо її математична модель задається диференціальним рівнянням
y''( t) +ay'( t) +by( t) =x( t).
При розв’язуванні використовуються такі методи: метод характеристичного рівняння, варіації довільних сталих, операційний метод (лишки та інтеграл Дюамеля), сплайн-функції і інші.
Оволодіння новим матеріалом здійснюється у такій послідовності: за допомогою довідникових програм студенти можуть ознайомитись із задачами, при розв’язуванні яких необхідно знати методи розв’язання крайових задач для звичайних диференціальних рівнянь; викладач організовує роботу студентів з програмами, в яких моделюються відповідні фізичні процеси; розкриває зміст поняття крайової задачі звичайного диференціального рівняння; студенти будують інтерполяційні многочлени, за допомогою одного з пакетів одержують графіки розв’язків рівнянь та їх наближень базовими функціями.
Зміст поняття крайової задачі для звичайних диференціальних рівнянь формується шляхом аналізу математичної моделі. А зміст поняття наближеного розв’язку крайової задачі можна розкрити інтегруючи, наприклад, рівняння
y''–2 y=4 х 2ехр( х 2), у(–1) =у(1) = 0,
розв’язком якого є функція y=exp( x 2) –0.624(exp(1.41 x) +
+exp( –1.41 x)) .Наближений аналітичний розв’язок знаходиться, наприклад, у вигляді комбінації базових функцій: u 0( х) =0, u 1( х) =1 –x 2, u 2( х) =1– x 4, ...
y( x) =a(1 –x 2) +b(1 –x 4) .
Для інших базових функцій, а саме: v 0( х) =0, v 1( х) =1– x 2, v 2( х) =x 2(1 –x 2), ... , наближений розв’язок шукаємо у вигляді:
y( x) =a(1 –x 2) +bx 2(1 –x 2) .
За допомогою пакетів студенти будують наближені розв’язки. Якщо вибрана система функцій { u n ( x)}, то коефіцієнти a=0.4203, b=–0.6563 і наближений розв’язок отримаємо у вигляді: y=0.656 x 4 –0.42 x 2 –0.236. У випадку вибору системи функцій { v n ( x)}, коефіцієнти будуть: a=–3.0934, b=–0.1460, а наближений розв’язок: y=–0.146 x 4 –2.95 x 2 +3.096. Далі студенти будують графіки наближених аналітичних розв’язків та графік точного розв’язку. Візуальна оцінка отриманих розв’язків дає змогу зробити аналіз та висновки щодо вибору базових функцій та необхідності оцінювання похибки наближення.
Розглянемо застосування математичних комп’ютерних систем до виконання типових розрахунків
Задача. Знайти розв’язок крайової задачі
y''–4 y'+4 y=e 3 x , y(0)=0, y(1)=–2.
Метод Рітца. Даються вказівки щодо виконання завдання.
1. Запишіть відповідний функціонал
J( y)=, y(0)=0, y(1)=–2.
2. Виберіть базисні функції, наприклад:
a) u 1( x) =x, u 2( x) =x(1 –x), u 3( x) =x 2(1 –x), ...;
б) u 1( x) =x( x–1), u 2( x) =x 2( x–1) , ...;
в) u 1( x) =1– x 2, u 2( x) =1 –x 4, u 3( x) =1 –x 6, ...;
г) u 1( x) =x 2(1 –x), u 2( x) =x 3(1 –x) 2, u 3( x) =x 4(1 –x) 3, ...;
3. Запишіть перше наближення y 1( x) розв’язку y( x).
4. Завантажте комп’ютерну систему DERIVE, та виконайте вказані дії.
5. Побудуйте графік функцій y( x). Порівняйте його із графіками наближених розв’язків y 1( x) і y 2( x).
Задача. Спрощена модель системи стеження радіолокатора може бути сформульована у вигляді ДР [2]:
x''( t) +a 1 x'( t) +a 2 x( t) =f( t) .(1)
Завдання типового розрахунку полягає в оцінюванні різниці вхідного і вихідного сигналів f( t) –x( t) і порівнянні різних форм вхідного сигналу f( t): f 1( t)= Asin( ?t+?), f 2( t) =b 0 +b 1 t+b 2 t 2, f 3( t) =b 0 +b 1 t+b 2 t 2 +b 3 t 3, якщо x(0)=0, x'(0)=0. Розглянути також випадки апроксимації функції f( t) многочленами, сплайн-функціями, якщо відомі значення функції f(0), f(1), f(2), f(3).
- Предыдущая
- 31/44
- Следующая