Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Тени разума. В поисках науки о сознании - Пенроуз Роджер - Страница 90


90
Изменить размер шрифта:

Рис. 4.4. Распространение света согласно общей теории относительности Эйнштейна не может являться эффектом «преломляющей среды» (в пространстве Минковского), поскольку это противоречит фундаментальному принципу специальной теории относительности — невозможности распространения сигналов со скоростью, превышающей скорость света в пространстве Минковского.

Известны и гораздо более «экстремальные» ситуации, в которых описать таким образом наклон световых конусов и вовсе невозможно, даже если допустить «превышение» абсолютное скорости в некоторых направлениях. Одну такую ситуацию иллюстрирует рис. 4.5: световые конусы наклонены под самым невероятным углом, чуть ли не перевернуты. Вообще говоря, такой чрезвычайный наклон возникает лишь в явно спорных ситуациях, где имеет место так называемое «нарушение причинности» — т.е. наблюдатель получает теоретическую возможность посылать сигналы в свое собственное прошлое (см. рис. 7.15, глава 7). Отметим еще, что соображения такого рода, как это ни удивительно, имеют самое что ни на есть непосредственное отношение к одной из тем нашего дальнейшего обсуждения (см. §7.10).

Рис. 4.5. В принципе наклон светового конуса может стать настолько большим, что сигналы смогут распространяться в минковскианское прошлое.

Следует упомянуть и еще об одном неявном обстоятельстве: «угол наклона» единичного светового конуса не является величиной, измеримой физически, а потому не имеет в сущности никакого физического смысла и не может послужить мерой  действительногоуменьшения или увеличения абсолютной скорости. Лучшим способом проиллюстрировать это обстоятельство будет следующий: вообразим, что изображение, представленное на рис. 4.3, нанесено на тонкий лист резины, что позволит поворачивать и деформировать каждый отдельный световой конус вокруг окрестности его вершины (см. рис. 4.6) до тех пор, пока он не расположится «вертикально», — т.е. так, как располагаются световые конусы в пространстве специальной относительности Минковского (рис. 4.2). При этом нет никакой возможности обнаружить (посредством локальных экспериментов), является ли «наклонным» световой конус того или иного конкретного события. Если же мы намерены настаивать на том, что «эффект наклона» обязан своим возникновением некоей «гравитационной среде», то нам придется объяснить и «странности» поведения этой самой среды — объяснить, почему эта среда ни при каком единичном пространственно-временном событии не поддается наблюдению. В частности, даже очевидно чрезвычайные случаи (представленные на рис. 4.5), для описания которых идея гравитационной среды ну совершенно не годится, оказываются неотличимы физически (если рассматривать один-единственный световой конус) от случая, когда наклон отсутствует (как в пространстве Минковского).

Рис. 4.6. Вообразим пространство-время в виде резинового листа с нанесенными на нем световыми конусами. Каждый отдельный световой конус можно поворачивать (растягивая резину) до тех пор, пока все они не выстроятся в стандартную минковскианскую картину.

Впрочем, если говорить вообще, то поворачивать тот или иной конкретный световой конус до его минковскианской ориентации мы можем лишь за счет деформации — и удаленияот минковскианской ориентации — некоторых из соседних световых конусов. Возникает, в общем случае, «математическое препятствие», в силу которого невозможно деформировать лист резины таким образом, чтобы все световые конусы выстроились в стандартный минковскианский порядок, показанный на рис. 4.2. В четырехмерном пространстве-времени это препятствие описывается посредством математического объекта, называемого  конформным тензором Вейля— в НРК мы ввели для этого тензора обозначение WEYL(см. НРК, с. 210). (Тензор WEYLдает ровно половину — «конформную» половину — информации, содержащейся в полном тензоре пространственно-временной кривизны Римана; впрочем, полагаю, что в данной ситуации беспокоиться о точном смысле этих терминов особой необходимости нет.) Развернуть всесветовые конусы в минковскианский порядок нам удастся лишь в том случае, если WEYLбудет равен нулю. Тензор WEYLесть мера гравитационного поля — в смысле гравитационной приливной деформации, — т.е. именно гравитационное полеи является тем самым препятствием, которое не дает нам «выпрямить» все световые конусы сразу.

Эту тензорную величину, конечно же, можно измерить физически. WEYL-тензорное гравитационное поле, например, Луны воздействует на Землю и вызывает ее приливную деформацию — внося тем самым основной вклад в возникновение приливов (см. НРК, с. 204, рис. 5.25). Этот эффект, впрочем, не связан непосредственно с наклоном световых конусов, а представляет собой лишь самое обычное проявление ньютоновского гравитационного воздействия. Более подходящим к случаю выглядит другой наблюдаемый эффект, так называемый эффект гравитационной линзы, предсказанный в теории Эйнштейна. Впервые гравитационную линзу наблюдал Артур Эддингтон во время экспедиции на остров Принсипи в 1919 году; при этом вызванное гравитационным полем Солнца искажение картины звездного неба было самым тщательным образом зарегистрировано. Звездное небо вблизи Солнца словно растягивается — при этом, скажем, небольшой круг из звезд представляется наблюдателю в виде эллипса (см. рис. 4.7). В данном случае воздействие WEYL-тензорного гравитационного поля на структуру световых конусов пространства-времени наблюдалось почти непосредственно. В последние годы эффект гравитационной линзы находит широкое применение в качестве инструмента наблюдательной астрономии и космологии. Свет от отдаленного квазара порой доходит до нас в искаженном виде, поскольку на его пути оказывается какая-либо крупная масса (например, галактика; см. рис. 4.8). Из наблюдаемых при этом искажений «внешности» квазара (вкупе с эффектами временной задержки) можно извлечь весьма ценные сведения о соответствующих расстояниях, массах и т.д. Все это можно полагать достаточно недвусмысленным свидетельством в пользу того, что феномен наклона световых конусов действительно существует, а также того, что WEYL-эффекты непосредственно измеримы.

Рис. 4.7. Непосредственно наблюдаемый эффект наклона световых конусов. Пространственно-временное WEYL-искривление проявляется в виде искажения картины звездного неба в результате отклонения световых лучей под воздействием гравитационного поля Солнца. Круг из звезд представляется наблюдателю эллипсом.

Рис. 4.8. Эффект эйнштейновского отклонения света широко используется сегодня в наблюдательной астрономии. По тому, насколько искажено изображение отдаленного квазара, можно оценить массу галактики, находящейся между квазаром и наблюдателем.

Предыдущие замечания наглядно иллюстрируют тот факт, что «наклон» световых конусов, т.е. гравитационное искажение причинности, представляет собой не нечто эфемерное, но вполне реальныйфеномен, который нельзя исчерпывающе объяснить каким бы то ни было остаточным (либо «эмергентным») свойством, возникающим у достигшего достаточной величины скопления материи. Гравитация имеет собственную уникальную природу, отличную от природы прочих физических процессов; на уровне тех сил, что существенны для фундаментальных частиц, гравитация непосредственно не наблюдается — тем не менее, она присутствует и здесь, и присутствует постоянно. Наклон световых конусов — прерогатива гравитации, никакие другиеиз известных современной физике сил и взаимодействий на это не способны. Таким образом, в этом фундаментальном отношении гравитация представляет собой нечто особенное, нечто принципиально отличноеот всех известных нам сил и физических воздействий. В самом деле, согласно классической общей теории относительности, наклон светового конуса вызывает присутствие любого материального тела, будь оно даже мельчайшей из песчинок (хотя в этом случае наклон будет, конечно же, крайне незначителен). В принципе, для наклона светового конуса достаточно и отдельного электрона — просто величина производимого подобными объектами наклона слишком мала, чтобы можно было говорить о каком бы то ни было непосредственно наблюдаемом его эффекте.