Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Тени разума. В поисках науки о сознании - Пенроуз Роджер - Страница 130
Надо сказать, что за последние годы уже было предпринято несколько попыток построить на основании этих соображений нетрадиционную непротиворечивую теорию. В 1966 году ученые венгерской школы под руководством Карольхази (Будапешт) представили [ 216] точку зрения, согласно которой реальный физический феномен R-процедуры обусловлен гравитационными эффектами (см. также [ 227]). Следуя несколько иной линии рассуждения, Филип Перл из Гамильтон-колледжа (Клинтон, шт. Нью-Йорк, США) выдвинул в 1976 году [ 284] негравитационную теорию, в которой R также фигурировала в качестве реального физического феномена. Позднее, в 1986 году, Джанкарло Гирарди, Альберто Римини и Туллио Вебер предложили новый интересный подход к решению проблемы; подход этот получил весьма положительную оценку самого Джона Белла, вследствие чего не заставили себя ждать многочисленные дальнейшие доработки и усовершенствования оригинальной идеи другими исследователями {80} .
Прежде чем мы перейдем в следующих параграфах к изложению моей собственной точки зрения на предмет, немало позаимствовавшей из схемы Гирарди—Римини—Вебера (ГРВ-схемы), будет полезно ознакомиться вкратце с собственно оригиналом. Основная идея состоит в том, что вектор состояния | ψ〉 предполагается реальным, а U-процедуры — в основном точными. Тогда, согласно уравнению Шрёдингера, волновая функция отдельной, изначально локализованной свободной частицы стремится с течением времени распространиться во всех направлениях в пространстве (см. рис. 6.1). (Вспомним, что волновая функция частицы определяет комплексные весовые коэффициенты для различных возможных местоположений этой самой частицы. Графики на рис. 6.1мы можем рассматривать как схематические описания поведения вещественных частей этих весовых коэффициентов.) Таким образом, со временем частица становится все менее и менее локализованной. Новым в ГРВ-схеме является допущение, что существует некоторая очень малая вероятность того, что волновая функция частицы внезапно умножится на функцию с выраженным максимумом (так называемую гауссовуфункцию) и известным размахом, определяемым некоторым параметром σ. Это событие схематически показано на рис. 6.2. При этом происходит мгновенная локализация волновой функции частицы, после чего функция вновь начинает «расползаться» вширь. Вероятность того, что пик гауссовой функции придется на то или иное конкретное местоположение частицы, пропорциональна квадрату модуля значения ее волновой функции в этой точке. Таким образом достигается совместимость со стандартным «правилом квадратов модулей» квантовой теории.
Рис. 6.1. Шрёдингерова эволюция волновой функции частицы во времени: первоначально функция плотно локализована в одной точке, а затем распространяется во всех направлениях в пространстве.
Рис. 6.2. В первоначальной схеме Гирарди—Римини—Вебера (ГРВ-схеме) волновая функция большую часть времени эволюционирует согласно стандартной шрёдингеровой U-эволюции, однако приблизительно раз в 10 8лет (на одну частицу) состояние частицы претерпевает своего рода «удар», при котором волновая функция частицы умножается на гауссову функцию с выраженным максимумом — ГРВ-интерпретация процедуры R.
Как часто происходит подобная процедура? Предполагается, что приблизительно раз в сто миллионов (10 8) лет. Обозначим этот период времени буквой T. Тогда вероятность того, что такая редукция состояния случится с частицей в течение, скажем, одной секунды, составит менее 10 —15(поскольку секунд в году около 3 × 10 7). Таким образом, в случае единичной частицы никто бы ничего и не заметил. А теперь представьте себе, что у нас имеется некий достаточно большой объект, каждая из частиц которого подвергается той же самой процедуре. Если наш объект содержит порядка 10 25частиц (примерно столько умещается в небольших размеров мыши), то вероятность того, что какая-либоиз его частиц испытает такого рода «удар», чрезвычайно возрастает, и можно ожидать, что удары внутри объекта будут происходить с интервалом приблизительно в 10 —10секунд. Каждый такой удар будет воздействовать на состояние объекта в целом, поскольку предполагается, что состояние каждой конкретной частицы, испытавшей удар, сцеплено с состояниями остальных частиц объекта.
Попробуем применить такой подход к шрёдингеровой кошке {81} . Этот парадокс — главная, в сущности, X-загадка квантовой теории — возникает, когда макроскопический объект (например, кошка) помещается в квантовую линейную суперпозицию двух очевидно различных состояний, скажем, «кошка жива» и «кошка мертва» (см. также §§5.1и 6.6). В квантовомеханическом смысле в такой суперпозиции ничего необычного нет, однако если рассматривать результирующую ситуацию как феномен окружающего нас с вами реальногомира, то она представляется крайне невероятной, — что Шрёдингер неустанно подчеркивал (отдельные «| ψ〉-реалисты», впрочем, Шрёдингеру не поверили и решили отыскать-таки разгадку, обратившись кто к множественности миров, кто к редукции состоянии посредством сознания, кто еще куда; см., например, §§6.2и 6.8). Для построения модели шрёдингеровой кошки нам необходимо лишь некое подходящее квантовое событие, вызывающее макроскопический эффект, — по сути, измерение. Например, единичный фотон, испущенный источником и либо отраженный от полупрозрачного зеркала, либо прошедший сквозь него (см. §5.7). Допустим, что пропущенная часть волновой функции фотона вызывает срабатывание детектора, который соединен с неким устройством, убивающим кошку, тогда как отраженная часть минует детектор, и кошка остается жива (см. рис. 6.3). Как и в приведенном выше рассуждении ( §6.6) результатом будет сцепленное состояние, одна часть которого включает в себя мертвую кошку, а другая — живую кошку и вылетающий из системы фотон. Обе возможности входят в вектор состояния одновременнодо тех пор, пока не произойдет редукция ( R). Вот эта вот загадка «измерения» и составляет центральную X-загадку квантовой теории.
В схеме же ГРВ одна из частиц объекта «кошачьих» размеров (что-то около 10 27ядерных частиц) почти мгновенно «ударяется» гауссовой функцией (см. рис. 6.2), и, поскольку состояние любой отдельной частицы сцеплено с состояниями всех остальных частиц кошки, редукция состояния этой частицы «увлекает» за собой всю кошку, каковая тут же оказывается либо живой, либо мертвой. Таким образом разрешается X-загадка шрёдингеровой кошки — и проблемы измерения вообще.
Рис. 6.3. Шрёдингерова кошка. Соответствующее квантовое состояние представляет собой линейную суперпозицию отраженного и пропущенного фотона. Пропущенный компонент вызывает срабатывание устройства, которое убивает кошку; иначе говоря, согласно U-эволюции, кошка существует в суперпозиции жизни и смерти. В ГРВ-схеме ситуация разрешается, поскольку составляющие кошку частицы почти мгновенно начинают испытывать «удары», первый же из которых локализует состояние кошки — и кошка оказывается либожива, либомертва.
- Предыдущая
- 130/174
- Следующая
