Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Тени разума. В поисках науки о сознании - Пенроуз Роджер - Страница 101


101
Изменить размер шрифта:

Вооружившись современными обозначениями и современной же концепцией отрицательного числа (а также учитывая тот факт, что кубический корень отрицательного числа равен отрицательному кубическому корню того же, но положительного числа), мы легко убеждаемся, что выражение Кардано, в сущности, идентично выражению Тартальи. Однако в случае Кардано в том же, казалось бы, выражении появляется нечто принципиально новое. Теперь при достаточно малом q' прямая может пересечь кривую в трехточках, т.е. у исходного уравнения окажется три решения (при  p> 0 два из них отрицательны). Случай этот — так называемый casus irreducibilis [35]— возникает, когда (1/2 q') 2< (1/3 p) 3; нетрудно видеть, что  wоказывается при этом квадратным корнем из отрицательного числа. Таким образом, числа 1/2 q' +  wи 1/2 q' -  wпод знаком кубического корня в выражении Кардано являются не чем иным, как комплексными числами; сумма же этих двух кубических корней, если мы хотим получить решение уравнения, должна быть вещественным числом.

Это таинственное обстоятельство не избежало внимания Кардано, и позднее в «Ars magna» он отдельно обратился к вопросу, поставленному появлением комплексных чисел в решении уравнения, на примере задачи об отыскании двух чисел, произведение которых равно 40, а сумма равна 10. Эту задачу он решил (причем решил правильно), получив в качестве ответа два комплексных числа:

и

В графическом представлении задача сводится к отысканию точек пересечения кривой  xy= 40 и прямой  x+ у= 10 (см. рис. 5.10). Отметим, что построенные на рисунке кривая и прямая нигде не пересекаются (в вещественных числах), что вполне согласуется с тем фактом, что для записи решения задачи требуются комплексные числа. Кардано эти новые числа в восторг отнюдь не приводили; он жаловался, что работа с ними «мучительна для разума». Тем не менее, изучая кубические уравнения, он вынужден был признать необходимость рассмотрения таких чисел.

Рис. 5.10. Задача Кардано об отыскании двух чисел, произведение которых равно 40, а сумма равна 10, может быть представлена графически как отыскание точек пересечения кривой  xy= 40 и прямой  xy= 10. При этом становится очевидным, что в вещественных числах эта задача решения не имеет.

Следует отметить, что необходимость в комплексных числах при записи решения кубического уравнения (представленного графически на рис. 5.9) обусловлена причинами, значительно более загадочными, нежели появление таких чисел в задаче, изображенной на рис. 5.10(задача эта, в сущности, эквивалентна задаче отыскания корней квадратного уравнения x 2 - 10 x+ 40 = 0). В последнем случае вполне очевидно, что без привлечения комплексных чисел задача не имеет решения вовсе, и ничто не мешает нам объявить введение таких чисел безосновательной выдумкой, затеянной исключительно ради того, чтобы снабдить хоть каким-то «решением» уравнение, в действительности решений не имеющее. Эта позиция, однако, не объясняет, что происходит в случае кубического уравнения. Здесь ( casus irreducibilisили прямая Rна рис. 5.9) уравнение действительно имеет три вещественныхрешения, отрицать существование которых невозможно, однако для того, чтобы выразить любое из этих решений даже в иррациональных числах (т.е. в квадратных и кубических корнях, как в данном случае), нам приходится забираться в таинственные дебри комплексных чисел, хотя окончательный результат и принадлежит миру чисел вещественных.

Похоже, что до Кардано никто в эти таинственные дебри не углублялся и не задумывался над тем, каким образом из них «произрастает» наш собственный «вещественный» мир. (Снаружи заглядывали — например, Герон Александрийский и Диофант Александрийский в первом и, соответственно, в третьем веках нашей эры, судя по некоторым свидетельствам, размышляли над идеей существования у отрицательного числа чего-то вроде «квадратного корня», однако ни один из них не набрался храбрости объединить такие «числа» с числами вещественными и прийти таким образом к понятию комплексногочисла; не разглядели они и глубинной связи между своими «псевдочислами» и вещественными решениями уравнений.) Возможно, именно удивительное сочетание в одном человеке двух личностей — мистика и рационально мыслящего ученого — позволило Кардано уловить эти первые проблески того, что развилось позднее в одну из мощнейших математических концепций. В последующие годы, благодаря трудам Бомбелли, Коутса, Эйлера, Весселя, Арганда, Гаусса, Коши, Вейерштрасса, Римана, Леви, Льюи и многих других, теория комплексных чисел разрослась вглубь и вширь и занимает сегодня заслуженное место среди наиболее изящных и универсально применимых математических конструкций. Однако лишь с появлением в первой четверти двадцатого века квантовой теории мы осознали, какую странную и всепронизывающую роль играют комплексные числа в самой фундаментальной структуре того физического мира, в котором мы живем, — не знали мы прежде и том, насколько тесна связь между комплексными числами и вероятностями. Даже у Кардано не возникло (да и не могло возникнуть) ни малейшего подозрения о существовании таинственной глубинной связи между двумя величайшими его вкладами в математику — связи, которая образует самый фундамент материальной Вселенной на тончайшем из ее уровней.

5.6. Основные правила квантовой теории

Что же это за связь? Что объединяет комплексные числа и теорию вероятностей, имея результатом неоспоримо превосходное описание работы тончайших внутренних механизмов нашего мира? Грубо говоря, законы комплексного исчисления справедливы на очень тонком подуровне феноменов, тогда как вероятности играют свою роль на узком мостике, что соединяет тот тонкий подуровень с хорошо знакомым нам уровнем обыденного восприятия, — от такого «объяснения», разумеется, проку немного; для сколько-нибудь реального понимания нам понадобится нечто более существенное.

Рассмотрим для начала роль комплексных чисел. В силу самого их определения их очень сложно принять в качестве инструмента для описания действительной физической реальности. Наибольшая сложность заключается в том, что им, на первый взгляд, просто нет места на уровне тех феноменов, что мы способны непосредственно воспринимать, на уровне, где действуют классические законы Ньютона, Максвелла и Эйнштейна. Таким образом, для того, чтобы наглядно представить себе, как именно работает квантовая теория, необходимо (хотя бы предварительно) учесть, что физические процессы происходят на двух четко разделенных уровнях: квантовомподуровне, где как раз и играют свою странную роль комплексные числа, и  классическомуровне привычных макроскопических физических законов. На квантовом уровне комплексные числа выглядят вполне естественно — однако вся эта естественность напрочь пропадает, случись им забрести на уровень классический. Я вовсе не хочу сказать, что между уровнем, на котором действуют квантовые законы, и уровнем классически воспринимаемых феноменов непременно должно наличествовать физическое разделение; давайте просто вообразим (пока), что такое разделение существует — это поможет понять смысл процедур, реально применяемых в квантовой теории. Вопрос о существовании такого физического разделения в действительностиочень глубок, и мы попытаемся на него ответить несколько позднее.