Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Самые знаменитые головоломки мира - Лойд Сэм - Страница 43
Однако есть и другая точка зрения, противоположная первой. Игроки № 2 и № 3 играли против игрока № 1 при специальном соглашении. Но поскольку игрок № 1 опередил игрока № 4, с него снимается всякая ответственность. А так как игроки № 2, № 3 и № 4 играли на равных, без всякого дополнительного соглашения, то игрок № 3 проиграл.
[Эта задача, очевидно, носит семантический характер и не имеет однозначного ответа. Как только в игру вступил четвертый игрок, следовало непременно пересмотреть предварительное соглашение относительно того, кого считать «проигравшим». Поскольку такого соглашения не было, при данных обстоятельствах этот термин не имеет точного смысла. Но подобно старому вопросу о том, обходит ли охотник «вокруг» белки, сидящей на дереве, бильярдная задача Лойда способна вызвать забавные споры. – М. Г.]
56. Пятьдесят очков можно выбить, поразив куклы с номерами 25, 6 и 19.
57. При живом Кейси число участников делилось на 2, 3, 4, 5, 6, 7, 8, 9 и 10. Взяв наименьшее общее кратное этих чисел, 2520, и вычитая из него 1, мы получим число участников без Кейси. Этот ответ был бы хорош, если бы не ловушка, содержащаяся в словах условия «поскольку шеренги из 11 человек не подходили». Но раз 2519 делится на 11, мы должны взять следующее по величине общее кратное указанных чисел, то есть 5040, и вычесть из него 1. В результате получится число 5039, которое не делится на 11. Следующее по величине общее кратное превосходит 7000 – значит, правильным ответом будет 5039 человек.
58. Тремя квадратными салфетками со стороной в 1 фут (12 дюймов) можно покрыть квадратный стол со стороной в 15 1/4дюйма. Поместите одну из салфеток в угол стола так, чтобы ее стороны совместились со сторонами столешницы, тогда оставшуюся часть можно легко покрыть двумя другими салфетками.
59. Ответ ясен из рисунка.
60. Если яблоки продаются по 1/3 пенни и 1/2 пенни за штуку, то легко показать, что средняя цена составляет 5/6 пенни за два яблока, или 25/60 пенни за яблоко. Поскольку яблоки продавались по цене 5 штук за 2 пенса, то продажная цена одного яблока составляла 2/5 = 24/60 пенни. Значит, на каждом яблоке терялось по 1/60пенни.
Известно, что общий убыток составил 7 пенсов. Следовательно, умножив 60 на 7, мы узнаем, что всего было 420 яблок, из которых каждая торговка владела 210 яблоками. Миссис Джонс за свои 210 яблок должна была выручить 105 пенсов, но поскольку она получила половину общей выручки (то есть 84 пенса), то ее убыток составил 21 пенс. Миссис Смит, которая должна была выручить за свои яблоки 70 пенсов, в действительности получила 84 пенса.
61. Вероятность выигрыша для гиппопотама составляет 1/3, а для носорога – 2/5.Поскольку в сумме три вероятности выигрыша должны равняться 1, мы делаем вывод, что для жирафа вероятность выигрыша составляет 4/15, то есть его шансы проиграть равны 11 к 4.
Что касается второй задачи, то жираф может опередить гиппопотама на 23/64 мили. Допустим, что жираф пробегает 2 мили в час; тогда носорог за то же самое время пробежит 1 7/8 мили, то есть он преодолевает 2 мили за 16/15 часа. За то время, когда носорог пробежит эти 2 мили, гиппопотам преодолевает 1 3/4 мили, то есть он бежит со скоростью 105/64 мили в час. Поскольку 2 мили – это то же самое, что и 128/64 мили, нам остается вычесть отсюда 105/64 и получить ответ. Если мы положим скорость жирафа равной другой величине, то на окончательный ответ это, разумеется, не повлияет.
62. 5 двухцентовых марок, 50 одноцентовых и 8 пятицентовых марок вместе стоят ровно 1 доллар.
63. Удивительным образом искомое число акров совпадает с числом квадратных футов в 1 акре, а именно оно равно 43 560. Такое число жердей в три ряда огораживает квадратное поле в 43 560 акров.
64. Существуют один-два способа, позволяющие варьировать ответ, но основной принцип, который приводит к нужному результату, остается неизменным.
Вначале игрок проигрывает 7 однофранковых ставок подряд, затем проигрывает 3 семифранковые ставки и выигрывает 4 семифранковые ставки, так что его суммарный проигрыш к этому моменту равен выигрышу.
Далее он дважды выигрывает по 49 франков, проигрывает 5 раз ту же сумму, а затем 7 раз выигрывает по 343 франка.
Теперь он 3 раза проигрывает и 4 раза выигрывает по 2401 франку, а потом дважды выигрывает и 5 раз проигрывает по 16 807 франков. Наконец, он выигрывает все 7 ставок по 117649 франков. Всего он выигрывает 869 288 франков и проигрывает 91 511 франков, так что чистый выигрыш составляет ровно 777 777 франков.
65. Секрет состоит в том, что первое яйцо нужно поместить точно в центр салфетки. Тогда, что бы ни делал ваш противник, точно повторяйте его ходы с противоположной стороны на прямой, проходящей через яйцо № 1. Цифры на рисунке обозначают номер соответствующего хода, помогая понять начало партии.
Просто положив яйцо в центр стола, вы рискуете проиграть, ибо противник может положить свое яйцо в непосредственной близости от вашего, как показано на рисунке, а из-за неправильной формы яйца вам не удастся в точности повторить его ход.
Следовательно, единственный способ выиграть наверняка состоит в том, чтобы, подобно великому мореплавателю, надбив конец яйца, поставить его вертикально.
66. Можно смело сказать, что крестьяне, так же как и сообразительные любители головоломок, некоторое время поупражнялись перед зеркалом, прежде чем добрались до ответа: 9 овец и 9 коз. Произведение этих чисел, 81, будучи отраженным в зеркале, превращается в 18, что как раз и совпадает с общим числом животных в стаде.
67. Первый участок пути яхта прошла за 80, второй – за 90 и последний участок – за 160 минут, что в сумме составляет 5 1/2 часа.
[Ответ можно получить алгебраически, если разбить весь путь на 12 равных частей и первые 4 части обозначить через х, средние 4 части – через х+ 10 и последние 4 части – через у.Наши данные (выраженные в минутах) позволят теперь выписать следующие два уравнения, из которых уже легко определить хи у.
х/4 + x + 10 + y = 270,
у/4 + х + 10 + х = 210.
68. Силы Гарольда располагались 13 квадратами, каждая сторона которых имела по 180 человек, что в сумме составляло 421 200 воинов. После того как в их ряды встал и сам Гарольд, воинов стало 421 201, так что они смогли расположиться в виде большого квадрата со стороной в 649 человек.
[Позаимствовав эту головоломку у Генри Э. Дьюдени, Лойд подверг задачу существенным изменениям, сделав ее более легкой и исторически правдоподобной. У Дьюдени речь шла о 61 квадрате вместо 13. Прежде чем вы попытаетесь решить головоломку, позвольте мне заметить, что в этом случае наименьшее возможное число людей составляет 3 119 882 982 860 264 400 (каждая сторона квадрата состоит из 226 153 980 человек). Вместе с Гарольдом они могли бы образовать квадрат со стороной в 1 766 319 049 человек. Общая задача, говорит Дьюдени, частным случаем которой является данная головоломка, была поставлена Ферма, хотя соответствующее уравнение известно как уравнение Пелля. – М. Г.]
69. Читатели, которые написали «Здесь нет никакого пути», решили головоломку, ибо эта фраза и определяет тот путь, при котором все марсианские города посещаются по одному разу!
- Предыдущая
- 43/56
- Следующая