Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Обитаемый остров Земля - Скляров Андрей Юрьевич - Страница 34
Величина ошибок, допущенных изготовителями саркофага, вновь, как и в случае с плоскими пилами, навела Петри на мысли не о ручной, а о машинной обработке. При ручном сверлении ошибки могли бы быть исправлены без столь значительных «лишних» заглублений, требующих многих часов изнурительной работы. И то, что подобные ошибки все-таки были сделаны, указывает на довольно большую скорость продвижения инструмента — в данном случае трубчатого сверла.
Более того, Петри обратил внимание на то, что в местах сверления сохранились отчетливые риски, оставленные сверлом. Такие же риски обнаруживались и на находимых археологами кернах. По параметрам этих рисок на одном из кернов Петри попытался оценить параметры сверлящего инструмента. Для скорости вращения и подачи сверла он получил просто невообразимые значения, которые в тысячи (!) раз превышали параметры современного ему машинного оборудования.
«Достойным удивления является величина сил резания, о которой свидетельствует скорость, с которой сверла и пилы проходили сквозь камень; по-видимому, при сверлении гранита 100-миллиметровыми сверлами на них действовала нагрузка не менее 1–2 тонн. У гранитного керна № 7 спиральная риска, оставленная режущим инструментом, имеет шаг вдоль оси отверстия, равный дюйму (25,4 мм) [похоже, здесь в источнике опечатка; реальные значения на порядок ниже, см. хотя бы исследования Данна ниже — А.С.], при длине окружности отверстия 6 дюймов (152,4 мм); этому соответствует потрясающая скорость резания… Такую геометрию спиральных рисок нельзя объяснить ничем, кроме того, что подача сверла осуществлялась под огромной нагрузкой…» (Ф.Петри)
Рис. 86. Риски на боковых стенках углубления в гранитном блоке в храме Усеркафа
Эти «неудобные» выводы Петри египтологи тоже весьма старательно похоронили. В итоге упоминания о них можно было найти лишь в так называемой «альтернативной литературе», достоверность информации в которой подвергается нередко вполне справедливой критике…
В конце ХХ века, через сто лет после Петри, его выводами заинтересовался американский исследователь Кристофер Данн, который сам имел немалый опыт работы в отраслях, связанных с техническим знанием. И дабы избежать ошибок, связанных с потенциально возможным искажением информации за столь длительный промежуток времени, он решил перепроверить выводы Петри. К счастью для Данна, далеко не все египетские артефакты оказались ныне похоронены в закромах Каирского музея, куда доступ любым представителям альтернативных взглядов на древнюю историю закрыт самым категоричным образом. Многое в свое время было вывезено в другие страны. В том числе и самим Петри, «добыча» которого ныне хранится в музее его имени в Лондоне, где режим допуска гораздо более лоялен к нетрадиционным точкам зрения. А среди экспонатов этого музея есть и тот самый «керн № 7», который Данн получил возможность исследовать вслед за Петри.
Выводы Данна еще больше поражают.
«В 1983 году Дональд Ран (Rahn Granite Surface Plate Co., Дэйтон, штат Огайо) сказал мне, что алмазные сверла, вращающиеся со скоростью 900 оборотов в минуту, проникают в гранит со скоростью 1 дюйм за 5 минут. В 1996 Эрик Лейтер (Trustone Corp) сказал мне, что эти параметры с тех пор не изменились. Скорость подачи современных сверл, таким образом, составляет 0,0002 дюйма за оборот, демонстрируя, что древние египтяне были способны сверлить гранит со скоростью подачи, которая была в 500 раз больше (или глубже за один оборот сверла), чем современные сверла. Другие характеристики также создают проблему для современных сверл» (К.Данн).
Среди «других характеристик» есть такой поразительный факт: спиральная риска, оставленная сверлом, оказывается глубже при прохождении через кварц, чем через более мягкий полевой шпат!.. Этого не может быть при ручном сверлении. Хотя о каком еще ручном сверлении может вообще идти речь при подобной скорости прохождения инструмента сквозь столь твердый материал как гранит — здесь явно машинная обработка…
Понимая всю сложность обеспечения параметров, имеющихся на «керне № 7», при обычном сверлении даже на современных станках, Данн выдвинул альтернативный вариант. Он предположил, что строители использовали так называемое ультразвуковое сверло.
Данн сравнивает процесс сверления ультразвуковым методом с бурением асфальта пневматическим молотком, с той разницей, что частота вибрации настолько велика, что ее нельзя увидеть глазом — она составляет 19–25 тысяч ударов в секунду. При помощи абразивного раствора или пасты ультразвуковой режущий аппарат вгрызается в материал, перемалывая его колебательными движениями. Использование такого ультразвукового сверла способно полностью объяснить все характерные особенности имеющихся следов.
В частности, винтовые риски (которые оказались вдобавок парными, как показали исследования Данном «керна № 7») образуются в этом случае не за счет режущего вращения сверла (которого при таком «сверлении» нет), а за счет винтовой подачи вибрирующего сверла вглубь материала.
«При ультразвуковой механической обработке инструмент может погружаться прямо вниз в обрабатываемый материал. Он может также вворачиваться в материал. Спиральное углубление можно объяснять, если мы будем рассматривать один из методов, которые преимущественно обычно относят к передовым машинным компонентам. Скорость вращения сверла не является значимым фактором в этом методе обработки. Вращение сверла — просто средство, чтобы придвинуть сверло к обрабатываемой поверхности. При помощи метода винта и гайки трубочное сверло может быть плотно прижато к рабочей поверхности, поворачиваясь по направлению часовой стрелки. Винт постепенно проходил бы через гайку, вынуждая колеблющееся сверло продвигаться в гранит. Это было бы ультразвуковое вынужденное движение сверла, которое будет осуществлять резание, а не вращение. Последнее было бы необходимо только, чтобы поддерживать режущее действие в рабочей области. По определению, этот процесс — не процесс бурения, по обычным стандартам, а процесс размола, в котором абразивы вызывают воздействие на материал таким образом, что удаляется регулируемое количество материала» (К.Данн, «Развитая машинная обработка в Древнем Египте»).
«Наиболее существенная деталь просверленных отверстий и ядер, изученных Петри, — то, что отверстие прорезано глубже через кварц, чем через полевой шпат. Кристаллы кварца используются в производстве ультразвуковых колебаний и, наоборот, отзывчивы к влиянию вибрации в ультразвуковом диапазоне, и в них можно сгенерировать высокочастотные колебания. В механической обработке гранита с использованием ультразвука более твердый кварц не обязательно оказал бы большее сопротивление, как это было бы в обычных методах механической обработки. Вибрирующий с ультразвуковой частотой инструмент нашел бы многочисленных «помощников» при прохождении через гранит, находящихся непосредственно в граните! Вместо сопротивления режущему воздействию, кварц отреагирует и начнет вибрировать в резонансе с высокочастотными волнами, и усилит абразивное действие по мере того, как через него проходит инструмент» (там же).
Однако высокочастотные вибрации будут серьезно увеличивать изнашиваемость инструмента. Частично же эту проблему ультразвукового сверления могло бы решить использование, например, так называемого «эффекта Ребиндера». Этот эффект возникает, если в процессе обработки используются поверхностно-активные вещества, которые заставляют материал становиться пластичным и как бы «перетекать» из зоны нагрузки туда, где нагрузки нет. Для гранита таким поверхностно-активным веществом является обычная вода. И «эффект Ребиндера», как считают современные геологи, именно из-за наличия воды в коре Земли заставляет гранитные породы при определенных условиях как бы перетекать из одной зоны в другую. Только происходит это на приличных глубинах — в нижнем слое коры.
- Предыдущая
- 34/173
- Следующая