Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Сенсационная история Земли - Скляров Андрей Юрьевич - Страница 17


17
Изменить размер шрифта:

Подобное «проскальзывание» коры способно обеспечить как изменение положения земных полюсов, сопровождаемое глобальными неоднородными изменениями климата, так и изменение видимого небесного свода (при «проскальзывании» видимое небо меняет наклон, хотя наклон самой оси вращения Земли по отношению к плоскости орбиты не изменяется).

Первоначальная версия этой теории предполагала, что данный эффект может быть обусловлен флуктуациями (колебаниями) притяжения Земли со стороны Солнца в совокупности с центробежными силами, действующими на ледниковые шапки планеты.

«Когда форма земной орбиты отклоняется от идеальной окружности больше чем на один процент, гравитационное воздействие Солнца на Землю возрастает, сильнее притягивая и всю планету в целом, и ее массивные ледовые шапки. Их громадный вес в свою очередь давит на кору, и это давление, в сочетании с возросшим наклоном земной оси, заставляет кору сдвинуться...» (Хэпгуд)

Однако простые физические оценки для такого процесса показывают его ничтожную вероятность.

Вследствие того, что масса ледяных шапок в полярных областях пренебрежимо мала по сравнению с массой земной коры (кора заведомо значительно толще мыслимой толщины ледяных шапок, больше льда по плотности и покрывает всю планету, в то время как ледяные шапки ограничены по площади), разница веса, вызываемая центробежными силами, на полюсе и на экваторе составляет менее одного процента (!), что низводит вращающее воздействие ледовых шапок на земную кору вообще на чрезвычайно низкий уровень. Такая разница находится на уровне приливных эффектов, вызываемых Луной, с которыми мы сталкиваемся ежедневно, однако они же не приводят ежедневно к подобным катаклизмам.

Вдобавок, если бы центробежных сил только лишь от ледяных шапок уже хватало бы для проскальзывания коры, то заведомо бы для проскальзывания коры хватало бы центробежных сил, воздействующих на материки, которые имеют существенно более значительную и толщину, и плотность. Но тогда (в результате движения коры под воздействием соответствующих центробежных сил) следовало бы ожидать более-менее симметричного распределения материков между двумя полушариями – северным и южным. Однако в реальности мы наблюдаем явную асимметрию – масса материков в северном полушарии заведомо больше тех, что находятся южнее экватора. И «проскальзывать» из-за этого земная кора вовсе не спешит…

Таким образом необходимо искать иные причины, способные обеспечить «проскальзывание» земной коры. И тут можно вспомнить о таком возможном факторе как метеорит, косвенные признаки падения которого встречаются в древних легендах и преданиях не только в виде упоминаний небесной «молнии» или «радуги», вызвавшей катастрофические события, но и в виде описаний наступившей «ударной зимы».

Поскольку метеориты очень редко падают на Землю строго вертикально, то при их ударе о поверхность имеет место как вертикальная, так и касательная составляющая силового воздействия. Ясно, что при достаточной силе удара данная касательная составляющая может служить причиной смещения земной коры по слою мантии, причиной «проскальзывания».

Рис. 43. Составляющие силового воздействия при падении метеорита.

Очевидно, что поскольку масса земной коры много меньше массы всей Земли (сравнить хотя бы толщину коры с радиусом Земли и учесть увеличение плотности с глубиной), постольку усилие, необходимое для смещения одной лишь земной коры, значительно слабее того воздействия, которое понадобилось бы для изменения движения всей планеты.

Оценочные расчеты (которые я не буду здесь приводить, дабы не перегружать мозг читателя излишними физико-математическими выкладками) показывают, что при «благоприятных» условиях вполне достаточно «камушка» радиусом всего 20-30 километров, подлетающего со скоростью порядка ста километров в секунду. Подобного «мусора» в нашей Солнечной системе имеется более чем достаточно…

* * *

Однако можно не только оценить возможность изменения положения полюсов планеты вследствие падения метеорита, но и более точно определить место этого падения по тем последствиям, которые были им вызваны. Для этого необходимо учесть следующее.

Касательную составляющую силового воздействия метеорита на кору планеты можно разложить на две других составляющих – широтную и меридиональную. Достаточно очевидно из простых соображений, что для точки полюса широтная составляющая, поворачивающая кору Земли вокруг все той же оси собственного вращения, не имеет никакого значения – смещение полюса происходит под воздействием лишь меридиональной составляющей. Следовательно, падение метеорита должно было произойти где-то на окружности, проходящей через старые и современные полюса.

Даже беглый взгляд на карту западного полушария показывает полное отсутствие в упомянутом районе хоть каких-нибудь следов падения столь крупного метеорита, который неизбежно должен был оставить после себя солидный кратер.

Зато восточное полушарие оказывается более привлекательным. Здесь район поиска в значительной мере покрыт акваторией Тихого океана, рельеф дна которого в некоторых регионах позволяет допустить ассоциации с остаточным кратером.

Но самую большую информацию дает тектоническая карта...

Ясно, что метеорит подобных размеров, сдвигая земную кору в целом, вполне мог вызвать в ней разломы и трещины. Особенно если учесть, что в месте ориентировочного падения такого «камушка» толщина земной коры оказывается сопоставимой с размером самого метеорита. Метеорит не только мог, но и должен был вызвать такие разломы.

Характер расположения тектонических плит и разломов указывает на то, что местом падения метеорита, вызвавшего Потоп, вполне мог быть район современного Филиппинского моря. Именно там находится как бы маленький «осколок» коры – Филиппинская плита, которая намного меньше любой другой на нашей планете.

Рис. 44. Тектоническая карта района Филиппинского моря.

Других таких «осколков» нет, за исключением лишь плиты Скота, размер которой сопоставим с Филиппинской. Однако происхождение плиты Скота вполне может быть объяснимо другими причинами. В частности тем, что в ходе «проскальзывания» нагрузка на земную кору должна была неизбежно вызвать в ней сильные внутренние напряжения, которые, согласно теории упругости, значительно возрастают вблизи острых краев или углов. Результат этого мы и можем наблюдать в виде Плиты Скота, как бы зажатой между острой оконечностью Южноамериканской материковой плиты и острым выступом Антарктической (опять же – материковой) плиты…

Но вернемся к Филиппинскому морю, которое (вместе с близлежащими островами) само по себе сильно напоминает кратер. Данное место характеризуется не только тем, что к нему сходится целый ряд тектонических разломов. Это регион, где находится максимальное количество очагов землетрясений, причем именно здесь больше всего глубинных очагов. Это тоже хорошо связывается с тектоническими последствиями метеоритного удара.

Следует отметить, что данный регион характеризуется еще и тем, что его как бы обрамляют самые глубоководные впадины на Земле, которые полностью совпадают по месту расположения с тектоническими разломами (читай – трещинами) в земной коре. Именно здесь находится и знаменитая Марианская впадина глубиной 11022 метра.

Рис. 45. Физическая карта Филиппинского моря.

Другим результатом падения метеорита может быть также и то, что район Филиппинского моря по данным геологии характеризуется тем, что здесь осадочные слои различного возраста находятся как бы в смешанном состоянии. Это опровергает иногда встречаемое утверждение об отсутствии метеоритных следов в осадочных породах того периода.

«На дне океанов, внутренних и окраинных морей прослеживается строгая последовательность осадков даже в тех случаях, которые соответствуют периоду возможной катастрофы. Нельзя представить себе, что падение столь огромного тела в океан не вызвало бы перемешивания осадочных пород. А если бы метеорит упал на сушу, в воздух поднялись бы облака песка и пыли. Отнесенные ветром в сторону океана они осели бы на дно, образовав слой осадков среди обычных глубоководных отложений. Но ни один такой слой на соответствующей глубине под дном океана не обнаружен» (Я.Малина, Р.Малинова, «Природные катастрофы и пришельцы из космоса»).