Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
100 знаменитых ученых - Скляренко Валентина Марковна - Страница 13
«Книга о восстановлении и противопоставлении» в основном посвящена решению уравнений первой и второй степени и применению математических законов на практике. Вот, к примеру, цитата, хорошо демонстрирующая практическую направленность книги: «Наиболее легкие и полезные навыки арифметики, например, то, что постоянно требуется человеку в делах наследования, получения наследства, раздела имущества, судебных разбирательствах, торговых отношениях или при измерении земельных участков, рытье каналов, геометрических вычислениях, а также в других случаях». Не удивительно, что неизвестное в уравнении автор называет «вещью», а его квадрат – «имуществом».
Вначале своей книги Хорезми дает определение натуральным числам и рассматривает десятичную систему исчисления: «Когда я поразмыслил над тем, что люди в основном пытаются найти в результате вычислений, я понял, что это всегда некое число. Также я отметил, что каждое число состоит из разрядов и может быть разделено на разряды. Более того, я обнаружил, что каждое число от 1 до 9 может быть выражено одной цифрой. Далее десятки удваиваются и утраиваются, также, как ранее единицы. Так появляются «двадцать», «тридцать» и так далее до ста. Затем, подобно единицам и десяткам, удваиваются и утраиваются сотни до тысячи;… и так далее до последнего предела исчисления».
Конечно, современному человеку, с раннего детства знакомому с десятичной системой, подобные объяснения могут показаться наивными, но во времена Хорезми далеко не для всех эта система была так очевидна. Кроме того, в данном случае ценность представляет не само объяснение, а обобщение, которое делает автор.
Далее Хорезми пишет о методах решения различных уравнений. Он приводит все уравнения к одной из шести стандартных форм:
– квадраты равны корням: ax2 = bx;
– квадраты равны числам: ax2 = c;
– корни равны числам: bx = c;
– квадраты и корни равны числам: x2 + bx = c;
– квадраты и числа равны корням: x2 + c = bx;
– корни и числа равны квадратам: x2 = bx + c.
Приведение уравнений автор предлагает осуществлять методами «аль-джебр» и «валь-мукабала» (восстановления и противопоставления). Под восстановлением он понимает перенесение вычитаемых членов из одной части уравнения в другую, под противопоставлением – сокращение в обеих частях уравнения равных членов.
Например, рассмотрим уравнение:
x2 + 5x – 7 = 9x.
После операции восстановления, уравнение примет вид:
x2 + 5x = 9x + 7
Теперь, применив противопоставление, получаем:
x2 = 4x + 7.
Для уравнений вида x2 + с = bx Хорезми приводит такое решение:
x = b/2 +-v ((b/2)2 – c),
при этом он указывает, что решение невозможно, если c > (b/2)2.
Конечно же, в наше время такие преобразования откровением не являются. Кроме того, на первый взгляд, человеку, хоть чуть-чуть знакомому с математикой, процедура восстановления вообще в ряде случаев покажется бессмысленной. Но тут нужно учитывать несколько обстоятельств. Нельзя забывать о том, что все свои вычисления Хорезми проводил в словесной форме, без использования математических знаков. Естественно, что это серьезно усложняло сам процесс вычислений и математических преобразований. Что же касается приема «восстановление», то его введение, скорее всего, продиктовано двумя факторами. Математики времен Хорезми не признавали существование отрицательных величин. «Восстановление» позволяло привести уравнение к такому виду, чтобы обе его части были положительными. Кроме того, с помощью этого приема уравнения можно было привести к одному из шести канонических видов, алгоритм решения которых заранее известен. Таким образом, можно сказать, что, предложив свои алгебраические методы решения уравнений, Хорезми смог свести большинство задач к некоей стандартной форме, абстрагируясь от конкретных условий.
Затем математик знакомит читателя с алгоритмами решения уравнений, приведенных к стандартному виду. Решать подобные задачи умели еще древнегреческие ученые. Но они делали это исключительно с помощью геометрических методов. Одна из основных заслуг Хорезми состоит в том, что он в своей работе впервые стал пользоваться исключительно алгебраическими методами, приводя геометрические решения уравнений только для доказательства правильности своих вычислений.
Далее Хорезми рассматривает возможность применения арифметических действий к алгебраическим выражениям. Например, он демонстрирует, каким образом следует умножать выражение типа: (a + bx) (c + dx).
Следующая часть «Книги о восстановлении и противопоставлении» содержит примеры использования методов, изложенных выше, для вычисления площадей и объемов геометрических фигур и тел.
Заключительный раздел книги еще раз подчеркивает ее практическую направленность. В нем рассматриваются сложные исламские законы наследования имущества. Правда, с точки же зрения математики этот раздел особого интереса не представляет, так как используемые в нем расчеты редко выходят за рамки линейных уравнений.
К числу достоинств «Книги о восстановлении и противопоставлении» следует отнести и более точное, чем у предшествующих авторов, определение числа я. Так Архимед для определения значения этой константы пользовался отношением: 22/7 (3,1429). Индусы использовали еще более грубое приближение: v10 (3,1623). Хорезми использует гораздо более точное значение числа ?: 3,1416. Как видим, это значение в точности совпадает с истинным (3,141592), принимая во внимание округление до четырех знаков после запятой. Правда, исследователи полагают, что это значение получено не самим Хорезми, а взято им из какого-то более раннего, скорее всего, греческого источника.
Помимо «Китаб аль-джебр валь-мукабала» до наших дней дошли сведения еще о нескольких трудах Хорезми. Так, он написал трактат об индо-арабских цифрах. В этой работе Хорезми описывает индусскую систему исчисления, основанную на использовании цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0. Вероятно, именно Хорезми впервые использовал ноль в качестве обозначающего разряд символа. Оригинальный текст этой книги был утерян, и она дошла до нас в латинском переводе «Algoritmi de numero Indorum». Именно благодаря этому переводу имя Хорезми и превратилось, как мы уже упоминали, в термин «алгоритм».
Как и большинство ученых тех лет, Хорезми не ограничивался только математикой. Он также был одним из самых известных астрономов своего времени. Им был составлен «Зидж ас-Синд-Хинд» (не следует путать этот труд с «Зиджем» Улугбека). Эта работа была основана на тексте, который еще в 770 году был преподнесен индийскими послами в числе подарков Багдадскому двору. Позднее данные этого текста были дополнены и обработаны с помощью собственных наблюдений Хорезми и его коллег. Также исследователи предполагают, что Хорезми был знаком с «Альмагестом» Птолемея, и это повлияло на форму, в которой ученый составил «Зидж». В книгу входят сведения о календарях, описания методов определения положения Солнца, Луны и планет, рассуждения о сферической астрономии, астрологические таблицы вычисления сроков затмений, таблицы синусов и тангенсов.
Также Хорезми принадлежит два трактата об астролябии, трактат о солнечных часах, работа об иудейском календаре, политическая история, в которую вошли гороскопы известных людей.
Особого внимания заслуживает книга Хорезми, посвященная географии. В ней указаны координаты 2402 географических объектов. При работе над этой книгой ученый, скорее всего, пользовался «Географией» Птолемея. Об этом свидетельствует то, что данные о европейских объектах, которые приводит Хорезми, совпадают с таковыми у Птолемея. При этом координаты тех топонимов, которые находились в более доступных для арабских исследователей местностях, указаны значительно точнее.
- Предыдущая
- 13/42
- Следующая