Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Геометрия, динамика, вселенная - Розенталь Иосиф Леонидович - Страница 35
p Эти флюктуации приводят к разбиению нашей Вселенной на экспоненциально большие области со всеми возможными типами вакуумных состояний (соответствующих локальным минимумам V(Ф, FI), где Ф — все остальные типы скалярных полей, присутствующих в теории) со всеми возможными типами компактификации «лишних» измерений. В каждой из таких областей свойства пространства-времени и низкоэнергетическая физика элементарных частиц будут различными.
В некоторых из этих областей размерность пространства-времени может быть отлична от четырех, вместо слабых, сильных и электромагнитных взаимодействий могут существовать взаимодействия совершенно других типов с другими константами связи, и т. д. Таким образом, согласно этому сценарию, глобальная геометрия нашего мира кардинально отличается от геометрии мира Фридмана. Вселенная оказывается состоящей как бы из отдельных фридмановских мини-вселенных с разными свойствами (рис. 13), и жизнь нашего типа может возникнуть лишь в части мини-вселенных, условия в которых достаточно хороши для этого (антропный принцип).
≡=РИС. 13
Сейчас еще трудно полностью оценить возможное значение обсуждаемых результатов. Новая картина мира приводит к иной постановке вопроса о том, возникла ли Вселенная из сингулярного состояния (или «из ничего»), или она существовала вечно, нескончаемо порождая все новые и новые области экспоненциально большого размера. Как бы там ни было, сейчас уже кажется все более правдоподобным, что наш мир в целом гораздо более многообразен, чем это можно было ожидать еще несколько лет назад. В основе этого многообразия лежит единство всех типов фундаментальных взаимодействий, высочайшая степень симметрии единых теорий, а также тот факт, что чем выше исходная симметрия, тем большим количеством разных способов она может быть нарушена. Что же касается раздувания Вселенной, то оно, с одной стороны, стимулирует переходы между состояниями с различными типами нарушения симметрии, а с другой стороны, экспоненциально увеличивает размеры возникающих областей с разными типами нарушения симметрии, т. е. с разными свойствами пространства и времени и разными свойствами элементарных частиц.
Подчеркнем, что в данном сценарии речь идет не о возникновении разных Вселенных, а о возникновении экспоненциально больших областей одной Вселенной с разными свойствами пространства-времени и элементарных частиц внутри каждой из них.
Д О П О Л Н Е Н И Е
К настоящему времени обнаружены и хорошо изучены четыре типа взаимодействий:
Э_л_е_к_т_р_о_м_а_г_н_и_т_н_о_е в_з_а_и_м_о_д_е_йс_т_в_и_е отвечает за взаимодействие заряженных частиц. Электромагнитное взаимодействие дальнодействующее в том смысле, что в статическом случае оно представляется законом Кулона: F ~ 1 / r**2 (r — расстояние между частями системы). Безразмерная константа этого взаимодействия ALPHA| = e**2 / (HP*c) ~ 1 / 137, где e ≈ 10**-19 Кл
e заряд электрона (протона).
Г_р_а_в_и_т_а_ц_и_о_н_н_о_е в_з_а_и_м_о_д_е_й_с_т_в_и_е является дальнодействующим, пропорциональным массам m|, m|
1 2 частиц системы. Сила соответствующего гравитационного взаимодействия F = G * m| * m| / r**2. Безразмерная
1 2 константа гравитационного взаимодействия ALPHA| = G * m**2 / (HP * c); G = 6.7 * 10**-8
g г**-1 * см**-3 * с**-2 — константа Ньютона. Характеристической массой в выражении для константы ALPGA|
p обычно полагают массу протона m| ≈ 10**-24 г. В этом случае
p ALPHA| ≈ 10**-38 /
g
С_л_а_б_о_е в_з_а_и_м_о_д_е_й_с_т_в_и_е отвечает за большинство распадов ядер и за взаимодействие нейтрино. Это короткодействующее взаимодействие: радиус его действия ~10**-16 см. Оно характеризуется безразмерной константой ALPHA| = g| * m**2 * c / HP**3, где g| = 10**-49 эрг*см**3
w F F — постоянная Ферми. При m=m| ALPHA| ≈ 10**-5.
p w
С_и_л_ь_н_о_е в_з_а_и_м_о_д_е_й_с_т_в_и_е ранее отождествлялось с ядерным взаимодействием между протонами и нейтронами. Начиная с 70-х годов доминирует концепция, что сильное (ядерное) взаимодействие обусловлено взаимодействием кварков, составляющих протоны и нейтроны и другие адроны (см. далее о классификации элементарных частиц). В соответствии с современными представлениями сильное элементарное взаимодействие — взаимодействие между кварками. Взаимодействие между протоном и нейтроном отождествляется с взаимодействием двух систем кварков, составляющих нуклоны. Сильное взаимодействие между двумя кварками короткодействующее. Его константа ALPHA| имеет сложную
s зависимость от характеристической массы m. Эту зависимость можно аппроксимировать в предельных случаях выражениями
/
! a
! -----, m >> m|,
! ln(m/m|) p ALPHA| = < p (Д.1)
s!
! ~1, m ~ m|.
! p
\
Величина a зависит от числа сортов кварков. В грубом приближении можно положить a≈1.
Совокупность квантовых чисел полностью определяет элементарную частицу. Некоторые квантовые числа имеют аналоги в макроскопической физике; некоторые специфичны лишь для представителей микрофизики элементарных частиц. Существенно, что конкретная совокупность квантовых чисел принадлежит только данной частице, изменение совокупности изменяет ее сорт. Здесь мы остановимся на определении некоторых из квантовых чисел, упомянутых в основном тексте книги.
М_а_с_с_а. Каждая частица характеризуется в свободном состоянии массой. Если частица входит в состав сложной схемы, то ее масса может измениться. Поэтому хотя масса и является важнейшим квантовым числом, тем не менее она не является строго сохраняющимся квантовым числом.
З_а_р_я_д. Электрический заряд всех элементарных частиц кратен заряду электрона e. Заряд — строго сохраняющееся квантовое число.
С_п_и_н. Спин — число, характеризующее собственное вращение элементарных частиц. Количественная его характеристика — момент количества движения. Спин может приобретать целое (в единицах HP: 0, HP, 2HP….) или полуцелое (1/2 HP, 2/3 HP….) значения. Наглядно, но неточно можно представить спин как вращение частицы в обычном пространстве Минковского. Ошибочность такого представления связана с точечностью некоторых элементарных частиц, и в первую очередь электрона. Для точечной частицы ее размеры r=0, следовательно, ее момент M = [rv] = 0. В квантовомеханической интерпретации спин — собственное вращение вектора состояния частицы в обычном пространстве.
И_з_о_т_о_п_и_ч_е_с_к_и_й с_п_и_н. Изотопический спин характеризует вырождение элементарных частиц по массам. Изотопический спин — характеристика семейств сильно взаимодействующих частиц. В семейство частиц с одинаковым изотопическим спином входят одинаково сильно взаимодействующие частицы, но с различными электрическими зарядами и близкими массами.
Количественно изотопический спин характеризуется целыми и полуцелыми числами. Изотопический спин отражает вращение вектора состояния в «воображаемом» зарядовом (изотопическом) пространстве. Изотопический спин характеризуется двумя числами: полным значением изотопического спина T и его проекцией на одну из осей координат T|. Приведем два z типичных изотопических семейств.
Нуклоны включают протоны с массой m| = 938.2 МэВ и p нейтроны с массой m| = 939.5 МэВ. Изотопический спин N нуклонов T = 1/2. Для протона проекция T| = 1/2, для z нейтрона T| = -1/2.
z
+
Пионы — семейство, состоящее из трех частиц: π ||- и 0 π |-пионов. Изотопический спин пионов T=1; проекции T|
z ± 0 π ||-пионов равны ±1; проекция T| для π |-пиона равна нулю.
z Изотопический спин — приближенно сохраняющееся квантовое число. Оно сохраняется в сильных и электромагнитных взаимодействиях, но не сохраняется в слабых.
С_т_р_а_н_н_о_с_т_ь. Это квантовое число отражает свойство некоторых элементарных частиц рождаться исключительно парами.
Например, невозможна реакция:
0 p+n — > p+^Л|, (Д.2)
(((ЗДЕСЬ Л ОБОЗНАЧАЕТ ДОВОЛЬНО БОЛЬШОЙ ЗНАЧОК ^)
но возможна реакция
+ + 0 π |+ + n — > K| + Л| (Д.3)
- Предыдущая
- 35/36
- Следующая