Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Математика. Утрата определенности. - Клайн Морис - Страница 9


9
Изменить размер шрифта:

Еще одну причину того, что греки классического периода отдавали предпочтение дедукции, можно усмотреть в организации их общества. Философией, математикой и искусством, естественно, увлекались прежде всего состоятельные люди, а не те, кто занимался физическим трудом. Все домашнее и общественное хозяйство держалось на рабах, метеках (свободных людях, не имевших, однако, гражданских прав) {9}и на свободных гражданах — ремесленниках; они же представляли все важнейшие профессии. Образованные свободные граждане не занимались физическим трудом и редко участвовали в торговых сделках. Платон провозгласил, что профессия лавочника недостойна свободнорожденного, и предложил подвергать наказанию всякого гражданина, который унизит себя подобным занятием, как совершившего преступление. Аристотель утверждал, что в идеальном государстве ни один гражданин (в отличие от рабов) не должен заниматься никаким ремеслом. Беотийцы (одно из греческих племен) запрещали тем, кто запятнал себя участием в торговых сделках, в течение десяти лет занимать общественные должности. В таком обществе эксперимент и наблюдение были мыслителям чужды. Считалось, что источники такого рода не могут помочь получить результаты научного, в частности математического, характера. 

Хотя приверженность греков дедуктивному доказательству имела под собой немало оснований, не вполне ясно, кто из философов или какая группа мыслителей впервые продемонстрировали эту приверженность. Наши знания учений и трудов философов — до Сократа — носят, к сожалению, весьма фрагментарный характер, и, хотя на этот счет неоднократно высказывались различные мнения, ни одно из них не получило общего признания. Мы можем лишь с уверенностью утверждать, что во времена Аристотеля требование дедуктивности соблюдалось неукоснительно, так как Аристотель, формулируя в явном виде стандарты строгости, отмечает необходимость неопределяемых терминов и правил логического вывода. 

Насколько удалось грекам осуществить свой план установления математических законов Вселенной? К счастью, лучшие достижения греческой математики, созданной усилиями Евклида, Аполлония, Архимеда и Клавдия Птолемея, дошли до нас. Хронологически все эти авторы относятся ко второму великому периоду греческой культуры, получившему название эллинистическогоили александрийского(300 г. до н.э. — 600 г. н.э.). В IV в. до н.э. царь Филипп Македонский предпринял попытку покорить персов, господство которых распространялось на весь Ближний Восток. Персы были традиционными врагами европейских греков. Филипп был убит, и на трон вступил его сын Александр. Александр Македонский разгромил персов и перенес культурный центр своей безмерно расширившейся империи в новый город, который он с присущей ему «скромностью» назвал в свою честь Александрией. Александр Македонский умер в 323 г. до н.э., но его план создания нового центра подхватили и продолжили его преемники в Египте, вошедшие в историю под именем династии Птолемеев. 

Достоверно установлено, что Евклид жил и преподавал в Александрии около 300 г. до н.э. (сам Евклид скорее всего получил образование в Платоновской Академии в Афинах). Это почти единственная информация, которой мы располагаем о частной жизни Евклида. Свои труды Евклид облекал в форму обширных систематических дедуктивных обзоров отдельных открытий многих греческих авторов классического периода. В главном труде Евклида — «Началах» излагаются основные свойства пространства и пространственных фигур. 

«Началами» Евклида отнюдь не исчерпывается его вклад в развитие геометрии пространства. Он посвятил коническим сечениям не дошедшее до нас сочинение, а уроженец города Перга в Малой Азии Аполлоний (262-190 гг. до н.э.), изучавший математику в Александрии, продолжил исследование параболы, эллипса и гиперболы и написал по этому предмету классический труд — «Конические сечения». 

Архимед (287-212 гг. до н.э.), возможно получивший образование в Александрии {10}, но живший на Сицилии, добавил к чисто геометрическим достижениям греков трактаты: «О шаре и цилиндре», «О коноидах и сфероидах» и «Квадратура параболы», посвященных вычислению площадей и объемов сложных фигур и тел по методу, предложенному Евдоксом (390-337 гг. до н.э.) и получившему впоследствии название метод исчерпывания. В наши дни подобные задачи решаются методами интегрального исчисления. 

Греки внесли еще один крупный вклад в изучение пространства и пространственных фигур: они создали тригонометрию. Ее основы были заложены Гиппархом, который жил на Родосе и в Александрии и умер около 125 г. до н.э. Его труд был продолжен Менелаем (ок. 98 г. н.э.), а полное и вполне авторитетное изложение астрономии дал египтянин Клавдий Птолемей (умер в 168 г. н.э.), работавший в Александрии. Главный труд Птолемея «Большое математическое построение астрономии» более известен под арабским вариантом названия — «Альмагест». {11} Тригонометрия занимается изучением количественных соотношений между сторонами и углами треугольника. Греков интересовали главным образом треугольники на поверхности сферы со сторонами, образованными дугами больших кругов (так называются круги, плоскость которых проходит через центр сферы), поскольку именно такие сферические треугольники находили применение при изучении движений планет и звезд, перемещавшихся, как считали греки, по дугам больших кругов. Но ту же теорию можно «перенести» и на случай треугольников на плоскости. Именно этот вариант — плоская тригонометрия — входит в программу современной средней школы. Введение тригонометрии потребовало весьма основательных познаний в арифметике и даже некоторого знакомства с алгеброй. В дальнейшем (гл. V) мы узнаем о достижениях греков в этих областях математики. 

Достигнутые успехи превратили математику из свода неясных, эмпирических, разрозненных фрагментов в блестящую, обширную, систематическую и глубокую науку. Классические труды Евклида, Аполлония и Архимеда («Альмагест» Птолемея является исключением), посвященные изучению свойств пространства и пространственных фигур, могут показаться весьма специальными и не позволяют составить верное представление о более широкой значимости излагаемого в них материала. Может создаться впечатление, что эти чисто геометрические сочинения имеют весьма косвенное отношение к раскрытию истинных тайн природы. Ведь все классические труды посвящены лишь изложению формализованной, изысканной, дедуктивной математики. В этом отношении греческие математические тексты не отличаются от современных учебников и монографий по математике. Авторы таких книг видят свою главную задачу в организации и связном изложении полученных математических результатов и считают излишним как-либо обосновывать важность излагаемых разделов науки и игнорируют возможные эвристические соображения и разбор частных случаев, подкрепляющих правдоподобность доказываемых теорем, а также умалчивают о возможных применениях своих конструкций. Многие историки науки, специализирующиеся на изучении греческой математики классического периода, склонны поэтому считать, что математики той эпохи занимались математикой ради математики, и в подтверждение своих слов ссылаются на два величайших компилятивных сочинения классического периода — «Начала» Евклида и «Конические сечения» Аполлония. Но те, кто так утверждает, чрезмерно сужают поле зрения. Ограничиваться рассмотрением только «Начал» и «Конических сечений» — это то же самое, что, исходя из одной лишь работы Ньютона о разложении бинома, утверждать, что Ньютон был чистым математиком. 

Подлинной целью греков было исследование природы. Этой цели служило все — даже геометрические истины высоко ценились лишь постольку, поскольку они были полезны при изучении физического мира. Греки понимали, — что в структуре Вселенной воплощены геометрические принципы, первичным компонентом которых является пространство. Именно поэтому исследование пространства и пространственных фигур явилось существенным вкладом в изучение природы. Геометрия входила составной частью в более широкую программу космологических исследований. Например, изучение сферической геометрии было предпринято, когда астрономия приобрела математический характер, что произошло во времена Платона. Греческое слово «сфера» (шар) у пифагорейцев имело тот же смысл, что и (тогда еще не существовавшее) слово «астрономия». Сочинение Евклида «Феномены», посвященное сферической геометрии, предназначалось для использования в астрономии. Подобные факты и более полное знание того, как происходило развитие математики в последующие времена, позволяют утверждать, что и у греков к постановке математических проблем приводили естественнонаучные исследования и что математика была неотъемлемой частью изучения природы. Чтобы прийти к такому выводу, не нужно строить умозрительные заключения — достаточно выяснить, чего именно удалось достигнуть грекам в исследовании природы и кому принадлежат самые крупные достижения.