Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Математика. Утрата определенности. - Клайн Морис - Страница 36
Настойчивость, проявленная математиками в поиске каких-либо абсолютных истин, вполне понятна. После многих столетий блистательных успехов математики в описании и предсказании физических явлений природы мысль о необходимости признать ее не коллекцией алмазов, а собранием искусственных камней была тяжела для каждого, а особенно для тех, кто был ослеплен гордостью за свои собственные достижения. Однако постепенно математики свыклись с тем, что аксиомы и теоремы их науки утратили статус истин о физическом мире. Некоторые области опыта подсказывали выбор специальных систем аксиом — для таких областей эти аксиомы и логические следствия из них были применимы достаточно точно, что позволило считать их полезным описанием действительного. Но расширение такой области может пагубно сказаться на применимости аксиом и теорем. Что касается изучения физического мира, то математика не предлагает ничего, кроме теорий, или моделей. Всякий раз когда накопленный нами опыт или специальный эксперимент показывает, что новая теория дает более точное описание реальности, чем старая, старую теорию вполне допустимо заменить новой. Отношение математики к физическому миру прекрасно выразил в 1921 г. Эйнштейн:
Если теоремы математики прилагаются к отражению реального мира, они не точны; они точны до тех пор, пока не ссылаются на действительность… Однако, с другой стороны, верно и то, что математика вообще и геометрия в частности обязаны своим происхождением необходимости узнать что-либо о поведении реально существующих объектов.
Бог отвернулся от математиков, и им не оставалось ничего другого, как принять человека. Именно это они и сделали. Они продолжали развивать математику и заниматься поиском законов природы, теперь уже зная, что их открытия не составляют часть божественного плана, а являются творениями людей. Одержанные в прошлом победы помогли им вновь обрести уверенность в своих силах, а нескончаемая череда новых успехов вознаграждала их усилия. Жизнь математики спасли чудодейственное «снадобье», ею же самой составленное: колоссальные достижения в небесной механике, акустике, гидродинамике, оптике, теории электромагнитного поля {59} и инженерном деле — и невероятная точность предсказаний. Наука, которая хотя и сражалась под победоносным знаменем истины, но одерживала свои победы с помощью загадочной «внутренней силы» (гл. XV), должна быть наделена скрытой мощью, чтобы не сказать магией. Развитие математики и применение ее результатов к естествознанию происходило теперь более быстрыми темпами, чем прежде.
Осознание того, что математика не является сводом абсолютных истин, эхом отозвалось на многих областях человеческой деятельности. Начнем с естествознания. Со времен Галилея физики понимали, что в основе фундаментальных законов естествознания в отличие от математики должен лежать эксперимент, хотя ранее они на протяжении двух столетий считали, что открываемые ими законы заложены в плане мироздания. Но к началу XIX в. физики пришли к заключению, что никакие естественнонаучные теории также не являются абсолютными истинами. Если даже математика имеет свои начала в человеческом опыте и не может более отстаивать свою истину, рассуждали естествоиспытатели, то, поскольку мы используем аксиомы и теоремы математики, наши собственные теории уязвимы в еще большей степени. Законы природы открывает человек. Мы, а не господь бог, устанавливаем законы природы. Закон природы описывает человек, а не предписывает бог.
Отзвуки постигшего математику бедствия докатились до всех областей культуры. Вера в достижимость мнимых истин в математике и математической физике порождала надежду на то, что истина достижима и во всех остальных областях знания. Эти надежды выразил в 1637 г. Декарт в своем «Рассуждении о методе»:
Те длинные цепи выводов, сплошь простых и легких, которыми обычно пользуются геометры, чтобы дойти до своих наиболее трудных доказательств, дали мне повод представить себе, что и все вещи, которые могут стать предметом знания людей, находятся между собой в такой же последовательности. Таким образом, если остерегаться принимать за истинное что-либо, что таковым не является, и всегда соблюдать порядок, в каком следует выводить одно из другого, то не может существовать истин ни столь отдаленных, чтобы они были недостижимы, ни столь сокровенных, чтобы нельзя было их раскрыть.
Декарт написал эти строки в те времена, когда успехи математического метода были еще сравнительно невелики. К середине XVIII в. эти успехи стали столь многочисленны и весомы, что ведущие мыслители обрели уверенность в необходимости применения рационального и математического подхода всюду, где необходимо достичь истины. Имея в виду свой век, Д'Аламбер писал:
… Некая экзальтация идей, вызываемая в нас зрелищем Вселенной… плодотворно сказалась на умах. Разливаясь повсюду, подобно реке, смывшей плотины, это плодотворное влияние насильственно увлекало на своем пути все, что сколько-нибудь мешало ему… От принципов теологии до оснований религиозных откровений, от метафизики до вопросов вкуса, от музыки до морали, от схоластических диспутов теологов до торговли, от законов князей до законов простого народа, от законов природы до законов наций… — все подверглось обсуждению, было проанализировано или по крайней мере отмечено.
Уверенность в том, что истины удастся обнаружить во всех областях человеческого знания, была до основания подорвана, когда выяснилось, что абсолютной истины нет даже в математике. Возможно, что надежда и даже вера в возможность достижения абсолютного знания в вопросах политики, этики, религии, экономики и многих других областях еще теплилась в умах людей, однако самая прочная опора подобных надежд была утрачена. Математика явила миру доказательство того, что человек может постигать истины — но она же и опровергла данное ею доказательство. Неевклидова геометрия и кватернионы, ознаменовавшие триумф человеческого разума, привели к бедствию, постигшему духовный мир человека.
По выражению знаменитого психолога Уильяма Джеймса (1842-1910), «духовная жизнь человека почти целиком заключается в замене концептуальным порядком той упорядоченности ощущений, в которых первоначально запечатляется его опыт». Но концептуальный порядок далеко не отражает упорядоченность восприятий.
С утратой истины разум человека утратил точку опоры, свою систему отсчета. «Гордость человеческого разума», падая, увлекла за собой здание истины. Урок этого состоял в следующем: никогда нельзя утверждать догматически даже то, в чем мы неколебимо уверены. Именно то, в чем мы наиболее уверены, должно вызывать наибольшие сомнения, ибо здесь проявляются не только наши достижения, но и наша ограниченность, пределы наших возможностей. Историю всеобщей убежденности в истинности математики можно закончить, процитировав «Размышления о бессмертии» Уордсворта. В середине XVIII в. математики могли сказать о своих творениях:
В середине XIX в. математикам не оставалось ничего другого, как с горечью признать:
Но история не дает повода к унынию. Как сказал о математике гениальный Эварист Галуа (1811-1832) «[эта] наука — творение человеческого разума, предназначенное не столько для знания, сколько для познания, для поиска, а не для отыскания истины». Возможно, в самой природе истины заложена способность ускользать от преследования или, говоря словами римского философа Луция Сенеки, «природа не сразу открывает свои тайны».
- Предыдущая
- 36/136
- Следующая
