Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Математика. Поиск истины. - Клайн Морис - Страница 61
Следующая весьма грубая картина позволит нам хотя бы в общих чертах понять, как ведут себя волны электронов в представлении Шрёдингера. На рис. 38 показана часть волны протяженностью 2?.Если такую волну создать, проведя смычком по скрипичной струне, то она будет колебаться вверх-вниз, занимая положения, показанные сплошной и штриховой кривыми. Можно возбудить и некую последовательность волн, длины которых составляют лишь дробные части основной длины волны (например, половину и треть ее). В представлении Шрёдингера полная волна, соответствующая любому электрону, окружая ядро, может простираться на две, три и даже пять основных длин волн. В каждом случае в полной волне электрона укладывается целое число основных волн и конец последней волны совпадает с началом первой (на рис. 38 точка Bдолжна совпадать с точкой A)
Рис. 38.
Введенная Шрёдингером ?-функция задает амплитуду волн материи, изменяющихся от точки к точке и от одного момента времени к другому. Это стоячие волны, сосредоточенные преимущественно в небольшой области пространства вблизи ядра. По мере увеличения расстояния от ядра волны постепенно затухают, но амплитуда их остается отличной от нуля в области, размеры которой совпадают с экспериментально установленными размерами соответствующего атома. Например, для атома водорода, находящегося в основном (самом нижнем) энергетическом состоянии, амплитуда волн заметно отлична от нуля только в пределах сферы диаметром около 10 ?8см. Для любого атома решение волнового уравнения Шрёдингера позволяет получить дискретный набор волн атомных электронов, и с каждым состоянием атома оно связывает определенное значение энергии.
Подчеркнем еще раз, что волна Шрёдингера, описывающая электрон в атоме, представляет не простую волну с одной-единственной частотой, а состоит из целого набора волн с различными частотами. В этом отношении волна Шрёдингера аналогична сложным звуковым волнам, создаваемым музыкальными инструментами.
В связи с волнами де Бройля — Шрёдингера естественно напрашивается вопрос: из чего они «сделаны», или, иначе говоря, из чего они состоят? Подобный вопрос вставал перед физиками и в XIX в., когда было открыто световое и другие виды электромагнитного излучения. Сначала физики полагали, что электромагнитные волны представляют собой колебания таинственной субстанции, называемой эфиром, и придумывали различные механические модели, объясняющие действие эфира. Но со временем физики поняли несостоятельность такого рода идей и стали считать электромагнитные волны самостоятельными сущностями. Нечто похожее произошло и с волнами электронов. Первоначально Шрёдингер предположил, что эти волны действительно описывают распределение заряда электрона, т.е. что в атоме заряд и плотность электрона физически распределены в той области пространства, где амплитуда волны отлична от нуля. Но ничего подобного не наблюдалось. Наоборот, после открытия электрона выяснилось, что весь его заряд сосредоточен в небольшой области пространства и что электрон имеет корпускулярную природу.
Строго говоря, когда мы рассуждаем о возможных видах волн, соответствующих различным энергетическим состояниям электрона, то имеем в виду один электрон, не испытывающий воздействия других частиц. Если же в атоме много электронов, то они утрачивают свою «индивидуальность» и соответствующие им волны сливаются в общую волну, «одну на все электроны».
В представлении Шрёдингера электроны подобны облакам с переменной плотностью. Они трехмерны. Электронные облака образуют несколько «ярусов» вокруг ядра. Плотность каждого облака возрастает от нуля до максимума и снова убывает до нуля. Электронные облака простираются и за пределы атома, но для каждого электрона их плотность максимальна на таком расстоянии от ядра, которое предсказывается теорией Бора. Электронное облако как интерпретация абстрактного математического понятия с неизбежностью неточно. Представить себе наглядно без ущерба для точности ?-функцию Шрёдингера невозможно. Нахождение аналитических решений уравнения Шрёдингера — задача настолько трудная, что решить ее удается лишь в отдельных исключительных случаях. Тем не менее полученные решения превосходно согласуются с экспериментальными данными, а другие решения, хотя и приближенные, также достаточно хорошо соответствуют результатам экспериментов. В частности, удалось полностью решить уравнение Шрёдингера для случая атома водорода. Полученное решение позволяет ответить на любой вопрос, допускающий экспериментальную проверку.
То, что электроны при определенных условиях ведут себя как волны, было продемонстрировано в 1927 г. знаменитым экспериментом Клинтона Дж. Дэвиссона (1881-1958) и Лестера Джермера (1896-1971) и независимо Джорджем П. Томсоном (1892-1975). Все эти исследователи обнаружили дифракцию электронов (в качестве дифракционной решетки использовался кристалл) Дифракция как явление, состоит в том, что волны огибают встречающееся на пути препятствие и заходят за него в область «тени». Нечто подобное мы наблюдаем, когда волны на воде огибают корпус судна. Опыты Дэвиссона и Джермера, а также Томсона показали, что в некоторых случаях частицы ведут себя как волны. Физики окончательно убедились в том, что всем субатомным частицам соответствуют свои волны, длины которых определяются формулой де Бройля. Так, работы де Бройля и Шрёдингера выдвинули на передний план понятие корпускулярно-волнового дуализма (волна — частица), доставившее немало хлопот и физикам, и философам.
Несмотря на экспериментальное подтверждение того, что электроны при определенных условиях ведут себя как волны, далеко не все физики смирились с представлением об электронах, «размазанных» вокруг атомного ядра. Некоторые усматривали, в частности, противоречие в следующем: с одной стороны, в любой физически бесконечно малой области плотность заряда электрода должна быть бесконечно мала, а с другой — электрический заряд электрона является величиной вполне определенной. Все электрические заряды кратны заряду электрона. Руководствуясь этими соображениями и пытаясь избежать корпускулярно-волнового дуализма, Макс Борн (1882-1970) в 1926 г. предложил совершенно иную интерпретацию теории Шрёдингера: ввел ее вероятностную интерпретацию.
Теория вероятностей вошла в математику благодаря случаю, а именно в связи с задачами об азартных играх. Но в конце XIX в. Максвелл и Людвиг Больцман (1844-1906), воспользовавшись в своих исследованиях вероятностными соображениями, пришли к законам, описывающим движение газов, — к кинетической теории газов. Одна из знаменитых работ, опубликованных Эйнштейном в 1905 г., также была посвящена вероятностной задаче о так называемом броуновском движении. Вместо того чтобы рассматривать электрон как распределенный в некоем пространственном облаке, плотность которого меняется от точки к точке, Борн интерпретировал плотность как вероятность обнаружить электрон как частицу в той или иной точке пространства.
Обращаясь к ?-функции, входящей в дифференциальное уравнение Шрёдингера, Борн предложил трактовать величину ?как вероятность того, что частица находится в данном элементе пространства в данный момент времени. Следовательно, местонахождение электронов как частиц может быть указано лишь с большей или меньшей вероятностью. Например, если в некоторой области пространства |?| 2= 0,8, то вероятность обнаружить частицу (электрон) в ней составляет 80 шансов из 100. Вероятностная интерпретация Борна общепринята и поныне.
Такой подход позволяет точно оценивать, с какой вероятностью электрон может находиться в любом данном объеме. При подобной интерпретации электрон локализован, а не «размазан», как в волновой механике Шрёдингера. Тем не менее остается вопрос, является ли вероятностная интерпретация наилучшей из возможных или же она просто порождена неполнотой наших представлений об электроне.
- Предыдущая
- 61/85
- Следующая
