Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Параллельные миры - Каку Митио - Страница 89
Но у цивилизации третьего типа появляется возможность создания ускорителя частиц размером с солнечную или даже звездную систему. Предполагается, что высокоразвитая цивилизация могла бы запустить пучок субатомных частиц в открытый космос и ускорить их до энергии Планка. Как мы помним, с приходом нового поколения лазерных ускорителей частиц за несколько десятилетий физики могут создать настольный ускоритель, способный достичь 200 ГэВ (200 миллиардов электронвольт) на расстоянии в один метр. При последовательном расположении этих ускорителей один за другим, возможно, получится достичь энергий, при которых пространство-время теряет стабильность.
Если мы предположим, что будущие ускорители частиц смогут разогнать их только на 200 ГэВ за метр, что само по себе является довольно сдержанным предположением, то для того, чтобы достичь энергии Планка, нам понадобился бы ускоритель частиц длиной в 10 световыхлет. Хотя такие размеры неимоверно велики для цивилизаций первого и второго типа, они вполне в пределах досягаемости цивилизации третьего типа. Для того чтобы построить ускоритель частиц таких колоссальных размеров, цивилизация третьего типа могла бы либо загнуть путь, по которому должны проходить частицы, в окружность, тем самым значительно сэкономив пространство, либо оставить путь прямым — тогда он протянется намного дальше ближайшей звезды.
Для примера, можно было бы построить ускоритель частиц, который разгоняет субатомные частицы по окружности внутри пояса астероидов. Тогда не пришлось бы конструировать дорогостоящие туннели, поскольку вакуум открытого космоса лучше любого вакуума, который мы можем создать на Земле. Но все же на далеких лунах и астероидах в Солнечной системе или в различных звездных системах пришлось бы построить гигантские магниты, расположенные с равными интервалами, которые от одного к другому изгибали бы направление движения пучка.
При приближении пучка к луне или астероиду гигантские магниты, расположенные на этой луне, притянули бы пучок, слегка изменяя направление его движения. (Кроме того, лунные или астероидные станции должны будут производить новую фокусировку пучка, поскольку на столь далеких расстояниях он будет постепенно расходиться.) Пройдя мимо нескольких лун, пучок постепенно прижмет форму дуги. В конечном счете он будет путешествовать по почти правильной окружности. Теперь можно представить себе два пучка, несущихся по этой окружности навстречу друг другу, один по часовой стрелке, а другой — против. При столкновении двух пучков энергия, выделившаяся из вещества/антивещества, приблизилась бы к энергии Планка. (Можно подсчитать, что магнитные поля, не-ооходимые для искривления такого мощного пучка, и во сне не виделись нашим современным технологиям. Однако весьма вероятно, что высокоразвитая цивилизация использует взрывчатые вещества для того, чтобы послать через катушки мощную волну энергии для создания гигантского магнитного импульса. Этот титанический выброс энергии будет одноразовым, поскольку, вероятнее всего, он Уничтожит катушки; поэтому магниты должны быть быстро заменены, прежде чем пучок частиц возвратится для следующего прохода по кругу.)
Не говоря уже об ужасно сложных инженерных проблемах, с которыми придется столкнуться при постройке такого ускорителя частиц, остается еще довольно скользкий вопрос: существует ли предел энергии, набираемой пучком частиц? Любой энергетический пучок частиц в конце концов сталкивается с фотонами, из которых состоит фоновое излучение (с температурой 2,7 градуса), и потому потеряет энергию. Теоретически это может высосать из пучка так много энергии, что возникнет своеобразный потолок энергии, который нельзя превысить в открытом космосе. Этот результат еще не был проверен экспериментально. (В сущности, есть указания на то, что энергетика столкновений космических лучей превышает этот максимальный уровень, что ставит под сомнения все вычисления.) Однако если; это правда, то понадобится еще более дорогостоящая модификация аппарата. Во-первых, можно заключить весь пучок в вакуумный туннель с защитой, чтобы не допустить воздействия фонового излуче-гния. Или же, в случае если эксперимент будет проводиться в далеком гоудущем, возможно, что фоновое излучение снизится настолько, что уже не будет представлять проблему.
Можно также представить себе еще одно устройство, принцип работы которого основан на лазерных лучах и взрывных механизмах. В природе невероятно высокие температуры и давления достигаются при помощи взрывов, к примеру когда умирающая звезда внезапно коллапсирует под действием силы гравитации. Это возможно благодаря тому, что гравитация только притягивает, а не отталкивает, и потому коллапс происходит однородно и звезда сжимается равномерно до невероятных плотностей.
Такой взрывной метод очень сложно воссоздать на Земле. Для примера, водородные бомбы требуют точности, не уступающей швейцарским часам, чтобы дейтерид лития, активный компонент водородной бомбы, оказался сжат и разогрелся до десятков миллионов градусов, создавая условия, удовлетворяющие критерию Лоусона, при которых начинается процесс синтеза. (Это достигается путем взрыва атомной бомбы рядом с дейтеридом лития, а затем равномерного распределения рентгеновского излучения по поверхности куска дейтерида лития.) Однако в ходе такого процесса энергия выделяется путем неконтролируемого взрыва.
В условиях Земли ни одна из попыток использования магнетизма для сжатия обогащенного водорода не увенчалась успехом, в основном, потому, что магнитные силы не сжимают газ равномерно. Монополя в природе мы никогда не наблюдали; соответственно, магнитные поля биполярны, как и магнитное поле Земли. В результате этого они чрезвычайно неравномерны. Применение их для сжатия газа подобно попыткам сжать в руках воздушный шарик. Всякий раз, когда вы сжимаете его с одного края, второй раздувается.
Еще одним способом управления синтезом могло бы стать использование системы лазеров, расположенных по поверхности сферы таким образом, чтобы они могли одновременно ударить в крошечную частицу дейтерида лития в центре. Например, в Ливерморской национальной лаборатории есть мощная лазерная установка для синтеза, используемая для моделирования ядерного оружия. В ней ряд лазерных лучей горизонтально проходит по туннелю. Затем зеркала, расположенные в конце туннеля, отражают каждый луч таким образом, что все лучи радиально направляются на крошечный кусочек вещества. Поверхность этого кусочка немедленно испаряется, в результате чего он взрывается и создаются невероятно высокие температуры. Таким образом, в действительности синтез происходит внутри кусочка вещества (хотя установка потребляет больше энергии, чем создает, а следовательно, является коммерчески нежизнеспособной).
Подобным образом можно представить, что цивилизация третьего типа построит батареи лазеров на астероидах и лунах различных звездных систем. Такая батарея лазеров выстрелила бы одновременно, выпустив ряд мощных лучей, сходящихся в одной точке, что создало бы температуры, при которых пространство и время стали бы нестабильными.
В теории предела количества энергии, которую можно поместить в лазерный луч, не существует. Однако при создании чрезвычайно мощных лазеров возникают проблемы практического характера. Одной из основных проблем является стабильность излучающего вещества, которое часто перегревается и разрушается при высоких энергиях. (Этупроблему можно преодолеть, использовав для генерации лазерного луча силу одноразового взрыва, такого, как ядерный.)
Цель выстрела из такой группы сферически расположенных лазеров заключается в разогревании камеры, чтобы внутри создался ложный вакуум, или же во взрыве и сжатии серии пластин для соз-, дания отрицательной энергии с помощью эффекта Казимира. Для создания такого приспособления с отрицательной энергией необходимо сжать набор сферических пластин до размеров длины Планка (10 33см). Поскольку расстояние между атомами составляет 10" 8см, а расстояние между протонами и нейтронами в ядре — 10" 13см, ясно, что сжатие пластин должно быть колоссальным. Поскольку общая мощность, которую можно собрать в лазерном луче, в принципе не ограничена, основной проблемой становится создание устройства, которое обладает достаточной стабильностью, чтобы выдержать это невероятное сжатие. (Поскольку эффект Казимира создает между пластинами чистое притяжение, необходимо также сообщить пластинам заряд, чтобы предотвратить их коллапсирование.) В принципе, внутри сферических оболочек должен образоваться портал-червоточина, который соединит нашу умирающую вселенную с намного более молодой и горячей вселенной.
- Предыдущая
- 89/99
- Следующая