Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Параллельные миры - Каку Митио - Страница 55


55
Изменить размер шрифта:

(Суперсимметрия также решает ряд сложных технических проблем, фатальных для ТВО. Для устранения математических противоречий в ТВО необходима суперсимметрия.)

Хотя суперсимметрия несет в себе очень мощную идею, в настоящее время не существует никаких экспериментальных доказательств ее истинности. Это может объясняться тем, что суперпартнеры известных нам электронов и протонов могут попросту обладать слишком большой массой, чтобы мы могли получить их на современных ускорителях частиц. Однако существует очень даже привлекательное доказательство существования суперсимметрии. Мы знаем, что три квантовых взаимодействия различны по силе. В сущности, при малых энергиях сильное взаимодействие в 30 раз сильнее слабого взаимодействия и в сотню раз сильнее электромагнетизма. Однако так было не всегда. Мы предполагаем, что в момент Большого Взрыва все три взаимодействия были равны по силе. Возвращаясь назад во времени, физики могут вычислить силы трех взаимодействий в начале времен. Анализируя Стандартную модель, физики обнаружили, что силы трех взаимодействий, видимо, стремились к равенству в момент Большого Взрыва. Но они не в точности равняются друг другу. Зато когда мы добавляем суперсимметрию, то все три взаимодействия в точности совпадают друг с другом по силе, а это именно то, что предполагается в единой теории поля. И хотя этот факт не является прямым доказательством в пользу суперсимметрии, он все же показывает, что суперсимметрия, по крайней мере, вписывается в рамки известной физики.

Силы слабого, сильного и электромагнитного взаимодействия не являются эквивалентными по силе в современном нам мире. Однако при энергиях Большого Взрыва силы этих взаимодействий должны полностью совпадать. Это совпадение имеет место при применении теории суперсимметрии. Таким образом, суперсимметрия может оказаться ключевым элементом для любой единой теории поля.

Вывод Стандартной модели

Хотя в суперструнах в принципе не существует настраиваемых параметров, струнная теория может предложить решения, удивительно близкие к Стандартной модели с ее пестрым собранием причудливых субатомных частиц и девятнадцатью «гуляющими» параметрами (такими, как массы частиц и их силы взаимодействия). Кроме того, в Стандартной модели существуют три идентичные (и лишние) копии всех кварков и лептонов, что кажется совершенно бесполезным. Ксчастью, струнная теория может без напряжения вывести многие качественные характеристики Стандартной модели. В 1984 году Филип Канделас из Техасского университета, Гари Хоровиц и Эндрю Стромингер из Калифорнийского университета в Санта-Барбаре, а также Эдвард Виттен показали, что если свернуть шесть из десяти измерений струнной теории и при этом сохранить суперсимметрию в оставшихся четырех измерениях, то крошечный шестимерный мир можно описать при помощи того, что математики называют многообразием Калаби-Яу. Взяв несколько примеров из пространств Калаби-Яу, они показали, что симметрию струны можно свести к теории, которая удивительно близка к Стандартной модели.

Таким образом, струнная теория дает нам простой ответ на то, почему в Стандартной модели существуют три излишних поколения. В струнной теории количество поколений или излишеств в кварковой модели связано с количеством «отверстий», которые мы обнаруживаем в многообразии Калаби-Яу. (Например, возьмем пончик, велосипедную камеру и кофейную чашку — все они являются поверхностями с одним отверстием. В оправе для очков два отверстия. В пространствах Калаби-Яу может существовать произвольное количество отверстий.) Таким образом, просто выбрав многообразие Калаби-Яу, в котором есть определенное количество отверстий, мы можем построить Стандартную модель с различными поколениями лишних кварков. (Поскольку мы никогда не видим пространства Калаби-Яу из-за того, что оно очень маленькое, мы также никогда не видим и того факта, что это пространство, подобно пончику, пронизано отверстиями.) В течение многих лет группы физиков пытались каталогизировать все возможные пространства

Калаби-Яу, осознавая тот факт, что топология этого шестимерного пространства определяет кварки и лептоны нашей четырехмерной Вселенной.

М-теория

Всеобщее увлечение струнной теорией, имевшее место в 1984 году, не могло продолжаться вечно. К середине 1990-х годов триумфальное шествие теории суперструн начало сбавлять темп. Легкие проблемы, которые решала эта теория, были уже все выбраны, и остались только сложные. Одной из таких проблем было открытие миллиардов решений струнных уравнений. При компактификации, или свертывании пространства-времени различным образом, струнные решения можно было записывать в любом измерении, а не только в четырех. Каждое из миллиардов струнных решений соответствовало математически непротиворечивой Вселенной.

Физики внезапно начали тонуть в струнных решениях. Что примечательно, многие из этих решений выглядели очень похожими на нашу Вселенную. Выбрав подходящее пространство Калаби-Яу, можно было относительно несложно воспроизвести многие из существенных черт Стандартной модели с ее причудливым скоплением кварков и лептонов, даже с ее любопытным набором поколений. Однако чрезвычайно сложной задачей (неразрешенной и по сей день) было обнаружить первоначальную Стандартную модель с определенными значениями ее девятнадцати параметров и тремя излишними поколениями. (Ошеломляющее количество струнных решений, вообще-то, приветствовалось физиками, которые поддерживали идею Мультивселенной, поскольку каждое решение представляет полностью непротиворечивую параллельную вселенную. Однако удручал тот факт, что физики испытывали сложности в обнаружении именно нашей Вселенной в этих джунглях вселенных.)

Одной из причин сложности этого предприятия является то, что в конечном счете суперсимметрию все же нужно разрушить, поскольку в нашем мире низких энергий мы этой симметрии не наблюдаем. К примеру, мы не видим в природе сэлектрона — суперпартнера электрона. Если оставить супер симметрию нетронутой, то масса каждой частицы должна быть эквивалентна массе ее суперчастицы.

Физики считают, что суперсимметрия была нарушена, и результатом этого является то, что массы суперчастиц огромны и, таким образом, суперчастицы находятся вне пределов досягаемости современных ускорителей частиц. Но в настоящее время никто еще не предложил правдоподобного механизма для нарушения суперсимметрии.

Дэвид Гросс из Института теоретической физики Кавли в Санта-Барбаре заметил, что существуют миллионы и миллионы решений струнной теории в трех пространственных измерениях, что несколько смущает, поскольку нет способа, с помощью которого мы можем выбирать среди них.

Были и другие вопросы, в частности то, что существовало пять непротиворечивых струнных теорий. Было сложно представить, что Вселенная могла позволять существование пяти отдельных единых теорий поля. Эйнштейн считал, что у Бога не было выбора при создании Вселенной, так почему же Бог должен был создать целых пять вселенных?

Первоначальная теория, основанная на формуле Венециано, описывает то, что называют суперструнной теорией типа I. В теории типа I фигурируют как открытые струны (с двумя концами), так и замкнутые струны (свернутые в окружность). Эту теорию очень активно разрабатывали в начале 1970-х годов. (Используя струнную теорию поля, Киккаве и мне удалось каталогизировать полный набор струнных взаимодействий типа I. Мы показали, что струны типа I требуют пять взаимодействий. Что касается замкнутых струн, то мы показали, что там необходим только один член взаимодействия.)

Мы с Киккавой также показали, что возможно построение полностью непротиворечивых теорий только с замкнутыми струнами (то есть похожими на петлю). Сегодня такие теории называются струнными теориями типа II, где струны взаимодействуют путем расщепления на две струны меньшего размера (этот процесс напоминает митоз в клетках).