Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Параллельные миры - Каку Митио - Страница 53
Комментируя эту историческую связь, Джейми Джеймс однажды сказал: «Музыка и наука [когда-то] были настолько тесно связаны, что любого, кто предположил бы существование какого-либо коренного различия между ними, посчитали бы невеждой, [однако сегодня] любой, предположивший, что у них есть нечто общее, рискует показаться мещанином одной стороне и дилетантом — второй; и, что самое неприятное, обе группы сочтут его человеком, популяризирующим их идеи».
Но если дополнительные измерения и вправду существуют в природе, а не только в чистейшей математике, то ученым, занимающимся струнной теорией, придется заняться той же проблемой, что неотступно преследовала Теодора Калуцу и Феликса Клейна в 1921 году, когда они сформулировали первую теорию дополнительных измерений: где же находятся эти измерения?
Калуца, впрошломмалоизвестньгйматематик, написал Эйнштейну письмо, в котором предлагал переписать уравнения Эйнштейна применительно к пяти измерениям (одно измерение времени и четыре измерения пространства). С математической точки зрения это никакой проблемы не представляло, поскольку уравнения Эйнштейна могли быть легко переписаны для любого количества измерений. Но в письме содержалось поразительное замечание: если выделить четырехмерные части, содержащиеся в уравнениях, записанных для пяти измерений, то мы автоматически, будто по волшебству, получим теорию света Максвелла! Иными словами, если мы всего лишь добавим пятое измерение, то из уравнений Эйнштейна для гравитации получается теория электромагнитного взаимодействия Максвелла.
Хотя мы не можем видеть само пятое измерение, на его поверхности образуется рябь, которая соответствует световым волнам! Это был приятный результат, поскольку на протяжении последних 150 лет целым поколениям физиков и инженеров приходилось заучивать сложные уравнения Максвелла. Сегодня эти сложные уравнения без всяких усилий выводятся как простейшие вибрации, которые можно обнаружить в пятом измерении.
Представьте себе рыб, плавающих в мелком пруду прямо под листьями кувшинок. Они считают, что их «вселенная» двумерна. Наш трехмерный мир может находиться за пределами их знания. Но существует способ, с помощью которого они могут уловить присутствие третьего измерения. Если идет дождь, то они отчетливо видят тень волн ряби, расходящихся по поверхности пруда. Подобным образом и мы не можем видеть пятого измерения, но рябь в пятом измерении предстает перед нами как свет.
(Теория Калуцы была прекрасным и глубоким открытием, касающимся симметрии. Позднее было замечено, что если мы добавим еще больше измерений к прежней теории Эйнштейна и заставим их вибрировать, то тогда эти вибрации дополнительных измерений будут представлять W- и Z-бозоны и глюоны, обнаруженные в сильном и слабом ядерном взаимодействии! Если путь, предложенный Калуцой, был верным, то Вселенная была явно намного проще, чем изначально предполагали ученые. Просто, вибрируя все «выше», измерения представляли многие взаимодействия, правящие миром.)
Хотя Эйнштейна потряс этот результат, он был слишком хорош, чтобы быть правдой. Спустя годы были обнаружены проблемы, которые сделали идею Калуцы бесполезной. Во-первых, его теория была усеяна противоречиями и аномалиями, что весьма типично для теорий квантовой гравитации. Во-вторых, тревожил гораздо более важный физический вопрос: почему же мы не видим пятого измерения? Когда мы пускаем стрелы в небо, мы не видим, чтобы они исчезали в другом измерении. Возьмем дым, который медленно проникает во все области пространства. Поскольку никогда не было замечено, чтобы дым исчезал в высшем измерении, физики поняли, что дополнительные измерения, если они вообще существуют, должны быть меньше атома. За последнее столетие идеей о дополнительных измерениях развлекались мистики и математики; что же касается фи-
зиков, то они с пренебрежением относились к этой идее, поскольку никто и никогда не видел, чтобы предметы пропадали в пятом измерении.
Для спасения теории физикам пришлось предположить, что эти дополнительные измерения настолько малы, что их нельзя наблюдать в природе. Поскольку наш мир четырехмерен, это предполагало, что пятое измерение должно быть свернуто в крошечный шарик размером меньше атома — слишком маленький, чтобы его можно было наблюдать в ходе эксперимента.
Струнной теории приходится сталкиваться с той же проблемой. Мы должны свернуть все эти нежелательные дополнительные измерения в крошечный шарик (этот процесс называется компактифи-кацией). Согласно струнной теории, изначально Вселенная была десятимерной, а все взаимодействия в ней были объединены струной. Однако десятимерное гиперпространство было неустойчивым, и шесть из десяти измерений начали сворачиваться в крошечный шарик, а остальные четыре расширились в Большом Взрыве. Причиной, по которой мы не видим эти другие измерения, является то, что они намного меньше атома, а потому ничто не может в них проникнуть. (Например, садовый шланг и соломинка издалека кажутся одномерными объектами, основной характеристикой которых является их длина. Но если рассмотреть их поближе, то мы обнаружим, что они, в сущности, являются двумерными поверхностями или цилиндрами, но второе измерение свернулось таким образом, что мы его не видим.)
Хотя все предыдущие попытки построить единую теорию поля с треском провалились, струнная теория до сих пор выдержала все испытания. В сущности, ей нет равных. Существуют две причины, по которым струнная теория преуспела там, где все остальные теории потерпели поражение.
Во-первых, будучи основанной на протяженном предмете (струне), струнная теория избегает многих отклонений, связанных с точечными частицами. Как заметил Ньютон, гравитационное взаимодействие, окружающее точечную частицу, при приближении к ней становится бесконечным. (В знаменитом законе обратных квадратов Ньютона гравитационное взаимодействие увеличивается пропорционально зависимости 1/г 2, так что оно стремится к бесконечности, когда мы приближаемся к точечной частице; то есть когда г стремится к нулю, гравитационное взаимодействие возрастает и стремится к 1/0, что представляет собой бесконечность.)
Даже в квантовой теории эта сила остается бесконечной, если мы приблизимся к квантовой точечной частице. За многие десятилетия Фейнман и другие ученые создали ряд хитрых правил, с помощью которых эти и многие другие противоречия можно было замести под ковер. Но для того, чтобы исключить все бесконечности в квантовой теории гравитации, недостаточно даже мешка ухищрений, собранного Фейнманом. Проблема в том, что точечные частицы бесконечно малы, а это означает, что их силы и энергии потенциально бесконечны.
Но при внимательном рассмотрении струнной теории мы увидим, что есть два способа, при помощи которых мы можем избавиться от этих противоречий. Первый способ исходит из топологии струн, а второй из-за своей симметрии называется суперсимметрией.
Топология струнной теории носит совершенно другой характер, чем топология точечных частиц, а отсюда различны и возникающие противоречия. (Грубо говоря, поскольку струна обладает конечной длиной, это означает, что силы не стремятся к бесконечности при приближении к струне. Рядом со струной силы возрастают пропорционально зависимости 1 /L 2, где L — это длина струны, соизмеримая с длинной Планка, порядка 10" 33см. Эта длина L позволяет отсечь все противоречия.) Поскольку струна не является точечной частицей, обладая определенным размером, можно показать, что противоречия «размазаны» вдоль всей струны, и отсюда все физические величины становятся конечными.
Хотя интуитивно кажется совершенно очевидным, что все противоречия струнной теории «размазаны» и потому конечны, точное математическое выражение этого факта довольно сложно и представлено «эллиптической модулярной функцией», одной из самых странных функций математики. Ее история настолько захватывающа, что ей даже довелось играть ключевую роль в одном из голливудских фильмов. «Умница Уилл Хантинг» — это история о неотесанном пареньке из рабочей семьи с окраин Кембриджа (его играл Мэтт Дэймон), который демонстрировал потрясающие способности к математике.
- Предыдущая
- 53/99
- Следующая