Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Параллельные миры - Каку Митио - Страница 50


50
Изменить размер шрифта:

Причиной столь странной истории струнной теории является ее развитие вспять. Обычно в такой теории, как теория относительности, начинают с основных физических принципов. Затем эти принципы сводятся к набору основных классических уравнений. В последнюю очередь вычисляют квантовые флуктуации для этих уравнений. Развитие струнной теории происходило в обратном направлении, начавшись со случайного открытия ее квантовой теории. И по сей день физики ломают голову над тем, какие физические принципы могут приводить в действие всю эту теорию.

Рождение струнной теории восходит к 1968 году, когда в ядерной лаборатории Европейской организации ядерных исследований (CERN) в Женеве два молодых физика Габриэле Венециано и Махико Сузуки листали книгу по математике и наткнулись на бета-функцию Эйлера, малоизвестную математическую формулу, открытую в XVIII веке Леонардом Эйлером, которая, казалось, странным образом описывала субатомный мир. Венециано и Сузуки были ошеломлены, увидев, что эта абстрактная математическая формула, по всей видимости, описывала столкновение двух я-мезонных частиц при невероятно высоких энергиях. Модель Венециано вскоре произвела сенсацию в физике; буквально в сотнях работ исследователи пытались обобщить ее для описания ядерных взаимодействий.

Иными словами, струнная теория была открыта совершенно слу-тайно. Эдвард Виттен из Института передовых исследований (которого многие считают творческим мотором многих ошеломительных переворотов в этой теории) сказал: «По справедливости говоря, у физиков XX века не должно было бы быть привилегии изучать эту теорию. По справедливости говоря, струнная теория не должна была быть изобретена».

Я ясно помню переполох, вызванный струнной теорией. Я в то время был еще аспирантом-физиком в Калифорнийском университете в Беркли. Помню, как физики качали головами и утверждали, что физика не должна была идти таким путем. В прошлом физика обычно основывалась на скрупулезных наблюдениях за природой, формулировании какой-либо частной гипотезы, внимательной проверки соответствия теории экспериментальным данным, а затем скучного повторения процесса, и так раз за разом. Струнная же теория основана на получении ответа методом простой догадки. Прежде считалось, что такие захватывающие прорывы невозможны.

Поскольку субатомные частицы нельзя разглядеть даже при помощи наших мощнейших инструментов, физики прибегли к жестокому, йо эффективному методу их анализа — сталкивании их при огромных энергиях. Миллиарды долларов были пущены на сооружение огромных «ускорителей частиц» диаметром во много километров. В них создаются пучки субатомных частиц, сталкивающихся друг с другом. Затем физики тщательно анализировали, что осталось после столкновения. Целью этого трудоемкого и напряженного процесса является создание ряда чисел, называемого матрицей рассеяния, или S-матрицей. Этот набор чисел имеет ключевое значение, поскольку в нем закодирована вся информация субатомной физики, — то есть ели знать S-матрицу, то можно вывести из нее все свойства элементарных частиц.

Одной из задач физики элементарных частиц является прогнозирование математической структуры S-матрицы для сильных взаимодействий — цель настолько трудно достижимая, что некоторые физики считали, что она лежит за пределами известной физики. Тут уже можно представить сенсацию, которую произвели Венециано и Судзуки, просто-напросто догадавшиеся об S-матрице, просматривая математическую книжку.

Модель Венециано была совершенно нестандартной. Обычно, когда кто-либо предлагает новую теорию (такую, как, допустим, кварки), физики вертят эту теорию, изменяя простые параметры (массы частиц или, скажем, силы взаимодействия). Но модель Венециано была настолько хорошо пригнана, что даже малейшее нарушение ее основной симметрии разрушало всю формулу. Эту модель можно сравнить с изделием из хрусталя тонкой работы: при любой попытке изменить его форму он разобьется вдребезги.

Из сотен работ, которые банально изменяли параметры модели, тем самым разрушая ее красоту, ни одна не продержалась до сегодняшнего дня. Сохранилась память лишь о работах, авторы которых задавались вопросом о том, почему вообще работает эта теория. Иными словами, они пытались обнаружить ее симметрии. В конце концов физики поняли, что эта теория вообще не содержит настраиваемых параметров.

Как ни замечательна была модель Венециано, все же и в ней крылись кое-какие проблемы. Во-первых, физики поняли, что это было всего лишь первое приближение к окончательной S-матрице, а не полная картина. Бундзи Сакита, Мигель Вирасоро и Кейджи Киккава (в те времена в Университете Висконсина) поняли, что S-матрицу нужно рассматривать как бесконечный ряд элементов и что модель Венециано была всего лишь первым и самым важным элементом в этом ряду. (Грубо говоря, каждый элемент в ряду представлял собой определенное количество вариантов столкновения частиц друг с другом. Они выработали несколько правил, при помощи которых можно было построить высшие элементы в их приближении. В своей диссертации я твердо решил завершить эту программу и создать все возможные поправки к модели Венециано. Вместе с коллегой Л. П. Ю я вычислил бесконечный набор поправочных элементов к этой модели.)

В конце концов Иоитиро Намбу из Чикагского университета и Тэцуо Гото из Японского университета определили ключевую характеристику, которая приводила модель в действие. Этой характеристикой оказалась вибрирующая струна. (В этом направлении также работали Леонард Зюскинд и Хольгер Нильсен.) Когда струна сталкивалась с другой струной, создавалась S-матрица, описанная в модели Венециано. В таком представлении каждая частица есть не рто иное, как вибрация, или нота, взятая на струне. (Я подробнее обращусь к этому понятию позднее.)

Развитие теории проходило очень стремительно. В 1979 году Джон Шварц, Андре Неве и Пьер Рамон обобщили струнную модель Таким образом, что она включала в себя новый параметр — спин, — hrro делало струнную модель подходящей кандидатурой и для взаимодействий частиц. (Как мы увидим далее, все субатомные частицы вертятся подобно волчку. Спин для каждой субатомной частицы: может быть представлен как целым числом (0,1,2), так и полуцелым (1/2, 3/2). Что примечательно, струна Неве-Шварца-Рамона давала именно этот набор спинов.)

И все же я был не удовлетворен. Двойная резонансная модель, как тогда ее называли, представляла собой скопление странных формул и практических методов. В течение последних 150 лет вся физика основывалась на «полях», которые были впервые введены британским физиком Майклом Фарадеем. Представьте себе линии Магнитного поля, создаваемого магнитом. Эти линии пронизывают пространство подобно паутине. В любой точке пространства можно измерить напряженность и направления силовых магнитных линий. Подобным образом и поле является математическим объектом, который приобретает различные значения в каждой точке пространства. Таким образом, поле определяет магнитное, электрическое или ядерное взаимодействие в любой точке Вселенной. Поэтому фундаментальное описание электричества, магнетизма, ядерной силы и гравитации основано на полях. Почему струны должны быть Чем-то другим? От «полевой теории струн» требовалось, чтобы она дала возможность подвести итог всему содержанию теории в одном-единственном уравнении.

В 1974 году я решил заняться этим вопросом. Вместе с коллегой Кейджи Киккавой из Университета Осаки нам удалось вывести самую суть полевой теории струн. Мы смогли суммировать всю информацию, содержащуюся в струнной теории, в уравнении длиной менее четырех сантиметров Теперь, когда полевая теория струн была сформулирована, необходимо было убедить физическое сообщество в ее силе и красоте. Я принял участие в конференции по теоретической физике в Аспенском центре в Колорадо тем же летом и провел семинар с небольшой группой ведущих физиков. Я порядком нервничал: среди слушателей были два нобелевских лауреата, Марри Гелл-Манн и Ричард Фейнман, которые славились тем, что любили задавать едкие и остроумные вопросы, заставляя оратора нервничать. (Однажды во время лекции, которую проводил Стивен Вайнберг, он начертил на доске угол, отмеченный буквой W, который был назван углом Вайнберга в его честь. Фейнман задал вопрос о том, что означала буква W Вайнберг еще только начал отвечать, как Фейнман крикнул: «Неверно!», что вызвало смех в зале. Что же, может быть, Фейнман и развлек слушателей, но последним смеялся все же Вайнберг. Угол на доске представлял важную часть теории Вайнберга, объединившей электромагнитное и слабое взаимодействие и в конечном итоге принесшей ему Нобелевскую премию.)