Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Ткань космоса. Пространство, время и текстура реальности - Грин Брайан - Страница 49


49
Изменить размер шрифта:

Затруднительное положение

Ваша интуиция отказывает прошлому с более высокой энтропией, поскольку при разворачивании событий в обычном направлении во времени требуется спонтанное возрастание порядка: молекулы воды спонтанно замерзают до 0°C и переходят в лёд, рассудок спонтанно обзаводится воспоминаниями о событиях, которые не происходили, видеокамеры спонтанно производят образы вещей, которых никогда не было, и т. д. — всё это кажется чрезвычайно маловероятным — предполагаемое объяснение прошлого, над которым посмеялся бы даже Оливер Стоун [38]. Здесь физические законы и математика энтропии полностью согласуются с вашей интуицией. Такая последовательность событий, которая была бы видна в прямом направлении времени с 10:00 до 10:30 вечера, шла бы против сути второго закона термодинамики — что привело бы к уменьшению энтропии, — а это, хотя и не невозможно, но очень маловероятно.

Напротив, ваша интуиция и ощущения говорят вам, что намного более вероятна такая последовательность событий, в которой кубики льда, которые были полностью сформированы в 10:00 вечера, частично растаяли до того состояния, которое вы наблюдаете в своём стакане прямо сейчас в 10:30 вечера. Но на этом этапе физические законы и математика энтропии только отчасти согласуются с вашими ожиданиями. Математика и интуиция сходятся в том, что еслина самом деле в 10:00 вечера полностью сформировались кубики льда, тогда наиболее вероятная последовательность событий будет для них состоять в том, что они частично растают к 10:30 вечера: результирующий рост энтропии соответствует как второму закону термодинамики, так и ощущениям. Но в чём математика и интуиция расходятся, так это в том, что наша интуиция, в отличие от математики, не может дать или даёт неверную оценку вероятности того, что в 10:00 вечера кубики действительно были полностью сформированы, исходя из единственного наблюдения, которое мы принимаем как неоспоримое и вполне надёжное, что прямо сейчас в 10:30 вечера вы видите частично растаявшие кубики.

Это центральный момент, так что позвольте мне объяснить. Главный урок второго закона термодинамики состоит в том, что физические системы имеют подавляющую тенденцию находиться в конфигурациях с высокой энтропией, поскольку имеется много способов, которыми такие состояния могут реализоваться. И однажды попав в такие высокоэнтропийные состояния, физические системы имеют подавляющую тенденцию оставаться в них. Высокая энтропия является естественным состоянием системы. Вам никогда не придётся удивляться или чувствовать необходимость объяснения, почему некоторая физическая система находится в высокоэнтропийном состоянии. Такие состояния являются нормой. Наоборот, нужно объяснять, почему физическая система находится в состоянии порядка, в состоянии с низкой энтропией. Такие состояния ненормальны, хотя определённо они могут возникать. Но с точки зрения энтропии такие упорядоченные состояния являются редкими отклонениями, которые требуют объяснения. Так что один факт в нашем эпизоде, который мы принимаем как неоспоримо правильный, — ваше наблюдение в 10:30 вечера низкоэнтропийных частично сформированных кубиков льда, — фактически нуждается в объяснении.

С точки зрения вероятности абсурдно объяснять это низкоэнтропийное состояние, призывая ещё менее энтропийное состояние, ещё менее вероятноесостояние, в котором в 10:00 вечера наблюдались ещё более упорядоченные, ещё лучше сформированныекубики льда. Вместо этого значительно более вероятно, что всё начинается с обыкновенного, вполне нормального высокоэнтропийного состояния: стакан однородной жидкой воды абсолютно без какого бы то ни было льда. Затем, через маловероятную статистическую флуктуацию, стакан воды идёт против требований второго закона термодинамики и эволюционирует в состояние с низкой энтропией, в котором появляются частично сформированные кубики льда. Эта эволюция, хотя и требует редких и необычных процессов, избегает состояний с ещё меньшей энтропией, ещё менее вероятного, ещё более редкого состояния, в котором кубики льда полностьюсформированы. В любой момент между 10:00 и 10:30 вечера этой странно выглядящей эволюции соответствует более высокаяэнтропия, чем при нормальном сценарии таяния льда, как вы можете видеть на рис. 6.3. Так что она реализует полученное в 10:30 вечера наблюдение способом, который более вероятен(намного более вероятен), чем сценарий, в котором тают полностью сформированные кубики льда. {78} Вот в чём загадка. [39]

Рис. 6.3.Сравнение двух возможных вариантов того, как кубики льда приходят к частично растаявшему состоянию в 10:30 вечера. Вариант 1 (нижняя кривая) соответствует вашей памяти о тающем льде, но требует относительно низкой энтропии в начальной точке в 10:00 вечера. Вариант 2 (верхняя кривая) противоречит вашей памяти, описывая частично растаявший лёд, который вы видите в 10:30 вечера, как самопроизвольно собравшийся из стакана воды. Сценарий 2 стартует в 10:00 вечера из состояния с высокой энтропией, т. е. из сильно разупорядоченного состояния с высокой вероятностью реализации. Каждый этап пути по направлению к 10:30 вечера согласно варианту 2 включает состояния, которые более вероятны, чем аналогичные состояния варианта 1, — поскольку, как вы можете видеть на графике, они имеют более высокую энтропию, — так что вариант 2 статистически более предпочтителен

Больцману оставался маленький шаг, чтобы осознать, что такому же анализу может быть подвергнута Вселенная целиком. Когда вы сейчас обозреваете Вселенную, то, что вы видите, отражает великий результат биологической организации, химического структурирования и физического упорядочения. Хотя Вселенная могла бы быть совершенно беспорядочным хаосом, но это не так. Почему? Откуда происходит такой порядок? Так же, как с кубиком льда, с точки зрения вероятности, крайне маловероятно, что Вселенная, которую мы видим, эволюционирует из ещё более упорядоченного — ещё менее вероятного — состояния в далёком прошлом, которое медленно развилось до его текущей формы. Поскольку космос имеет очень много составляющих, масштабы упорядоченного по сравнению с неупорядоченным интенсивно увеличиваются. Итак, что правильно для бара, тем более должно быть правильно для всей Вселенной: намногоболее вероятно — настолько, что захватывает дух, — что вся Вселенная, которую мы видим, появилась как редкая статистическая флуктуация из нормальной, обыкновенной, высокоэнтропийной, совершенно неупорядоченной конфигурации.

Подумаем об этом таким образом: если вы снова и снова подбрасываете горсть монет, рано или поздно они все лягут вверх «орлом». Если вы обладаете почти бесконечным терпением, необходимым для подбрасывания снова и снова перепутанных страниц романа «Война и мир»в воздух, рано или поздно они лягут в правильном порядке номеров. Если вы подождёте с вашей открытой бутылкой колы, рано или поздно хаотические столкновения молекул углекислого газа заставят их залезть назад в бутылку. И, к удовлетворению Больцмана, если Вселенная ожидает достаточно долго — может быть, близко к бесконечности, — её обычное, высокоэнтропийное, высоковероятное, полностью разупорядоченное состояние из-за собственных столкновений, соударений и хаотических течений частиц и радиации рано или поздно просто соберётся в конфигурацию, которую мы наблюдаем сейчас. Наши тела и мозги должны были появиться полностью сформированными из хаоса — с запасом памяти, знаний и умений, — хотя прошлое, которое всё это отражает, никогда в действительности не имело место. Всё, что мы знаем, всё, что мы ценим, будет итогом ничего иного, как редкой статистической флуктуации, на мгновение возмутившей почти бесконечный беспорядок. Это схематически показано на рис. 6.4.

вернуться

38

Оливер Стоун — американский кинорежиссёр, сценарист и продюсер известных исторических художественных и документальных фильмов («Александр» и др.). (Прим. ред.)

вернуться
вернуться

39

Вспомним, что в разделе «Энтропия» мы показали огромное различие между числом упорядоченных и разупорядоченных конфигураций для всего лишь 693 двусторонних листков бумаги. Теперь мы обсуждаем поведение около 10 24молекул H 2O, так что различие между числом упорядоченных и разупорядоченных конфигураций будет настолько грандиозным, что захватывает дух. Более того, те же самые рассуждения остаются в силе для всех других атомов и молекул внутри вас и в окружении (мозг, камеры наблюдения, молекулы воздуха и т. д.). То есть в стандартном объяснении, в котором вы можете верить своей памяти, не только частично растаявшие кубики льда были в 10:00 вечера в более упорядоченном — менее вероятном — состоянии, но и всё остальное: когда видеокамера записывает последовательность событий, это проявляется в общем росте энтропии (из-за нагревания и сопутствующих процессу записи помех); аналогично, хотя мы слабо понимаем микроскопические детали процесса записи информации мозгом, но ясно, что когда мозг записывает события, тоже имеется итоговый рост энтропии (мозг может увеличивать порядок, но, как и с любыми производящими порядок процессами, если мы примем во внимание выделение тепла, будет итоговый рост энтропии). Если мы сравниваем полную энтропию бара между 10:00 и 10:30 вечера в двух сценариях — один, в котором вы верите своей памяти, а другой, в котором вещи спонтанно упорядочиваются из начального неупорядоченного состояния, достигая соответствия с тем, что вы видите сейчас, в 10:30 вечера, — то получим чудовищную разницу энтропий. Последний сценарий (вариант 2) на каждом его этапе имеет бо?льшую энтропию, чем первый сценарий. С точки зрения вероятности последний сценарий значительно более вероятен.