Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Квантовая магия - Доронин Сергей Иванович - Страница 8


8
Изменить размер шрифта:

В физических экспериментах можно изучать различные типы взаимодействий непосредственно в аспекте декогеренции. Это, например, делалось в экспериментах А.

Цайлингера

[

Nature

427, 711–714 (2004)], где исследовался процесс декогеренции по одному из каналов взаимодействия с окружением — за счет теплового излучения. Еще раз подчеркну, что эти процессы фундаментальные, и характерны они не только для микрочастиц, как иногда ошибочно считают, а для любых объектов, в том числе и для макроскопических тел. В подтверждение приведу цитату из этой статьи:

«Декогеренция тепловым излучением — общий механизм, который относится ко всем макроскопическим телам» ( Выделено мной.

— С. Д.).

По большому счету, все взаимодействия являются «эффектом декогеренции». Более того, согласно теории декогеренции, весь классический мир — это «эффект декогеренции». Данный момент подчеркивается, например, в самом названии книги по теории декогеренции: E.

Joos

, H. D.

Zeh

, C. Kiefer, D.

Giulini

, J.

Kupsch

, and I. O.

Stamatescu

«

Decoherence

and the Appearance of a Classical World in Quantum Theory» (Springer, Heidelberg, 2003). Ссылка на эту работу идет первой в списке литературы статьи в

Nature

, о которой упоминалось выше. Это серьезный источник, и авторы — известные ученые.

На сайте первого автора этой книги — E. Joos-а http://www.

decoherence

.de — можно прочитать следующие утверждения (выделения сохранены).

«Декогеренция…

— объясняет,

почему

кажется, что макроскопические системы обладают привычными классическими свойствами;

— объясняет, почему некоторые объекты кажутсянам локализованными в пространстве;

— объясняет, почему появились ранее противоречивые уровни описания в физике (классический и квантовый).

— Никаких дополнительных классических концепций не требуется для

самодостаточного

квантового описания.

— Не существует никаких частиц.

— Не существует никакого времени на фундаментальном уровне.

— Существует всего лишь ОДИН основной каркас для всех физических теорий: квантовая теория».

Все эти выводы сделаны не на пустом месте. Они отражают и обобщают результаты многолетних научных исследований тысяч и тысяч ученых, подтвержденные многочисленными экспериментами. В последнее время в научных журналах ежегодно публикуется огромное количество экспериментальных и теоретических статей по декогеренции и квантовой запутанности. Подчеркну, что речь идет о стандартной квантовой теории, а не о различных новомодных «интерпретациях» квантовой механики. Теория декогеренции, квантовая теория информации, теория запутанных (несепарабельных) состояний — все это прикладные разделы стандартнойквантовой теории, и на их основе разрабатываются технические устройства, основным рабочим ресурсом которых являются запутанные состояния.

Процессы декогеренции, наличие квантовой запутанности, возможность целенаправленно ее изменять — все это факты, которые сегодня нельзя игнорировать. Все это уже работает в технических устройствах.

Таким образом, во многом благодаря практическим нуждам, важнейшие фундаментальные физические процессы, происходящие в реальности, которые наука раньше не рассматривала, вошли в сферу внимания научного сообщества и стали объектом тщательного (как теоретического, так и экспериментального) исследования. Пришло понимание того, что мера квантовой запутанности системы, ее динамика и физические процессы, ведущие к усилению или уменьшению квантовой запутанности, — это основополагающиехарактеристики системы. А фундаментальность новых (для науки) физических процессов обусловлена тем, что они являются неотъемлемым свойством любогоэлемента реальности.

Ориентируясь на потребности общества в новых перспективных технологиях, наука была вынуждена сделать психологически трудный для нее шаг. Ей пришлось перейти от привычной полуклассической копенгагенской интерпретации квантовой механики, подразумевающей обязательное наличие классического наблюдателя (измерительного прибора), к чисто квантовому подходу, в котором уже не осталось места классическому «пережитку». И это был поистине революционный шаг.

В результате квантовый подход к описанию окружающей реальности стал

самодостаточной

согласованной теорией, построенной из единых общих принципов, логично включающей в себя классическую физику как частный случай квантового описания.

Другое дело, что при осмыслении квантовой запутанности и процессов декогеренции, при попытке увязать их с нашим мировоззрением и пониманием окружающей реальности возникает множество вопросов. Тут может быть очень широкий диапазон различных мнений и точек зрения.

Таким образом, от теоретических основ квантового компьютера мы постепенно подошли к фундаментальным вопросам естествознания, к тем существенным изменениям в научной картине мира, которые следуют из последних достижений современной теоретической физики.

1.4. Нелокальный источник реальности

Для начала давайте сформулируем основной вопрос, который мы хотим прояснить. Как известно, правильно поставленный вопрос — более половины ответа. Попробуем спросить: «Действительно ли окружающий нас мир состоит из обособленных твердых объектов?»Действительно ли мир ограничивается материей и различными физическими полями, которые мы можем воспринимать непосредственно или с помощью классических приборов, и кроме этого ничего не существует? Или все, что мы видим вокруг себя, — лишь незначительная часть более сложной совокупной реальности? На первый взгляд, вопрос может показаться абстрактным, «

нефизичным

», не имеющим однозначного ответа со стороны физики, которая бы подтверждала свои выводы экспериментами. Такие эксперименты проводились и проводятся, и мы еще будем о них говорить более подробно, и есть однозначные выводы, хотя не все готовы их принять. Но пока не будем торопиться и начнем издалека.

Практически каждый из нас что-то слышал о волнах де Бройля, о дуализме волна-частица. Тот, кто знаком с квантовой теорией, может вспомнить, что поля и частицы — это не разные объекты, а разные способы описанияодного и того же объекта. Для микромира давно решен вопрос и о том, что мы будем наблюдать в эксперименте — волну или частицу. Решение это очень поучительное. Оказывается, все зависит от наблюдателя. Если он захочет увидеть исследуемый объект в виде частицы, то возьмет нужный измерительный прибор — и увидит ее вполне твердой «на ощупь», а пожелает увидеть распределенным в пространстве (волну), возьмет другой прибор, и вся твердость куда-то

исчезнет (ча

стица проходит через две щели одновременно). Прибор играет роль своеобразного фильтра восприятия, отбирая и показывая нам лишь один из возможных способов описания материи. Как говорил Луи де Бройль [18], «этот прибор как раз и извлекает из состояния, которое существовало до измерения, одну из содержащихся в нем возможностей».

Квантовая механика первой поставила под сомнение, казалось бы, очевидную предметность нашего мира и осознала, что немаловажная роль в процессе «

опредмечивания

» окружающей действительности принадлежит измерительному прибору и наблюдателю. До недавнего времени считалось, что такое необычное поведение материи характерно только для микрочастиц. Но классики уже в момент становления квантовой механики прекрасно понимали, какое огромное значение имеют эти выводы для общей картины окружающего мира, и что они выходят далеко за рамки микромира. Например, В. Гейзенберг [19], рассуждая на эту тему, говорил: «Идея реальности материи, вероятно, являлась самой сильной стороной жесткой системы понятий XIX века; эта идея в связи с новым опытом должна быть, по меньшей мере, модифицирована». Однако недостаток научных данных в то время позволял ученым лишь философствовать на эту тему.