Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Квантовая магия - Доронин Сергей Иванович - Страница 24


24
Изменить размер шрифта:

Что может дать такое описание? На мой взгляд — очень многое. Например, здесь открывается путь к количественному описанию, то есть к научной методологии и практической технологии «магии сознания». Скажем, ОВД (остановка внутреннего диалога) — прямой аналог нелокального суперпозиционного состояния, когда у нас нет никакого конкретного состояния сознания (определенного слова, чувства и т. д.), но мы можем «проявить» одно из них в «локальной» форме. А как говорил дон Хуан в книгах К.

Кастанеды

, ОВД — это ключ к магии. Здесь явная аналогия с квантовой теорией, где нелокальные суперпозиционные состояния — ключ ко всем «сверхъестественным» физическим проявлениям типа

телепортации-телепатии

.

Мы еще будем периодически возвращаться к этим вопросам, но пока я продолжу разговор об основных понятиях квантовой теории, связанных с вектором состояния.

Как уже говорилось, в квантовой теории принято различать чистые и смешанные состояния. Приведем определения.

Чистым состоянием (ЧС) называется такое состояние системы, которое может быть описано одним вектором состояния.

Смешанным состоянием называется такое состояние системы, которое не может быть описано одним вектором состояния, а может быть представлено только матрицей плотности.

Ключевой момент в понимании ЧС состоит в том, что система в принципе, пусть даже практически это сделать нереально, но можетбыть описана одной волновой функцией (вектором состояния, волновым вектором). И основное различие между чистым и смешанным состоянием в этом и заключается — существует или

нет принципиальная возможностьполностью описать

состояние системы одним вектором состояния. Если это можно сделать — состояние чистое, если нет — смешанное.

Очевидно, что мы можем описать систему одним вектором состояния только в том случае, если она замкнута [59], изолирована. Замкнутость — необходимое условие для ЧС. В противном случае система будет взаимодействовать с окружением и не может быть полностью описана одним лишь вектором состояния — придется учитывать волновые векторы окружения. Замкнутость — это также и достаточное условие для ЧС, поскольку вся информация, необходимая для полного описания системы, находится в ней самой, и ее достаточно для принципиальной возможности записать вектор состояния всей системы.

В квантовой механике понятие чистого состояния и понятие замкнутой системы тождественны. Если квантовая система может быть описана одним вектором состояния, говорят, что она находится в чистом состоянии. Для замкнутых систем такая ситуация имеет место по определению.

Остановимся чуть более подробно на замкнутой системе и зададимся вопросом: «В каком состоянии должны находиться подсистемы, и какие корреляции между ними возможны, чтобы состояние всей системы оставалось замкнутым, то есть ЧС?»

Здесь возможны два варианта. Самый простой — когда вся система состоит из подсистем, каждая из которых, в свою очередь, сама является замкнутой. В данном случае каждая подсистема находится в ЧС, обладая при этом своим независимым вектором состояния в пространстве с размерностью меньшей, чем размерность всей системы (речь идет о гильбертовом пространстве). При таком условии вся система может быть разложена по независимым подсистемам. Вектор состояния всей системы (и размерность ее гильбертова пространства) будет равен тензорному [60]произведению векторов состояния подсистем. Такое состояние системы называется

сепарабельным

(разделимым).

Это то, на чем стоит вся классическая физика. Если бы не существовало такого варианта чистого состояния, то не было бы и классической физики. Другой вариант ЧС — когда система находится в когерентной суперпозиции состояний всех ее подсистем.

Обычно именно этот вариант вызывает наибольшие трудности в понимании. Вероятно, потому, что мы не можем непосредственно увидеть и «пощупать» это состояние в окружающем мире, хотя на протяжении всей человеческой истории о нем говорится постоянно. Так что некоторые представления об этом состоянии замкнутой системы мы все же имеем. Например, для Вселенной, как замкнутой системы, — это Единый Источник классической реальности, Бог, Абсолют и т. п.

В терминах квантовой физики этот случай соответствует ЧС системы, в которой существуют лишь нелокальные квантовые корреляции. Такое состояние в квантовой физике называется чистым запутанным состоянием (ЧЗС).

И самое интересное, что классических корреляций в ЧС нет и быть не может.

Таким образом, ЧС бывают либо

сепарабельными

, либо ЧЗС. Третьего, как говорится, не дано.

И это не мои

домыслы

и предположения. Это строгий результат, следующий из основ квантовой теории. Например, об этом достаточно четко сказано в работе «Запутанные квантовые состояния атомных систем» [61]. В разделе 2.2 читаем: «Итак, чистые квантовые состояния бывают либо квантово-коррелированными (запутанными), либо вообще некоррелированными». Далее, в разделе 2.4 еще раз: «Как уже отмечалось, в случае чистых состояний любые корреляции являются квантовыми, то есть соответствуют запутанным состояниям».

Напомню, что некоррелированность, то есть отсутствие вообще каких-либо корреляций, как классических, так и квантовых, — это сепарабельные состояния.

Итак, непосредственно из основ квантовой физики следует, что:

● замкнутая система находится в чистом состоянии;

● в замкнутой системе корреляции (и классические, и квантовые) между подсистемами могут отсутствовать вовсе (в случае не взаимодействующих подсистем, то есть

сепарабельного

состояния);

● в замкнутой системе корреляции между подсистемами могут быть только нелокальными квантовыми (для взаимодействующих подсистем);

● в замкнутой системе отсутствуют классические корреляции между ее подсистемами.

Напомню, что речь идет о произвольных замкнутых системах. И в полной мере эти выводы справедливы только для всего Универсума, как единственной системы, которая является по-настоящему замкнутой.

Здесь у многих сразу же может возникнуть вопрос: как же так, мы, вместе с окружающими нас объектами, являемся частью Вселенной, при этом классически взаимодействуем с окружением и вовсе не находимся в нелокальном состоянии. Как это сопоставить с тем, что было сказано выше? Никакого противоречия здесь нет, и квантовая механика также отвечает на этот вопрос. Кстати, отвечая на него, ученые вывели количественную характеристику запутанности. Все дело в том, что мы, вместе с окружающими нас объектами, являемся именно частью системы, а классические корреляции отсутствуют во всей системе целиком. То есть в пространстве состояний (гильбертовом пространстве) с максимальной размерностью, соответствующем всей системе, классических корреляций нет, но они могут быть между подсистемами в пространствах состояний меньшей размерности. Данное обстоятельство можно пояснить еще следующим образом: гипотетический внешний наблюдатель, который смотрит на замкнутую систему снаружи, не увидит перед собой никаких классических объектов и не обнаружит взаимодействий между ними. Перед ним будет пустота — уточню:

это в том случае, если наблюдатель охватывает взглядом сразу всю систему. Если же у него есть что-то наподобие «подзорной трубы», и через нее он станет смотреть на отдельную подсистему, «вырезая» из поля зрения все остальное окружение, тогда он уже сможет увидеть выделенную подсистему как классический локальный объект.

Если обратиться к математическому формализму квантовой теории, то для записи вектора состояния обычно используют

дираковские

обозначения. В самом простом случае двухуровневой системы (например, кубита), вектор состояния имеет вид: