Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Десять великих идей науки. Как устроен наш мир. - Эткинз (Эткинс) Питер - Страница 65
Рис. 7.5.Типичная волновая функция (слева). Это волновая функция маятника, который качается с малой начальной энергией. Квадрат волновой функции (показанный справа) говорит о вероятности того, что качающийся маятник будет обнаружен в данном положении. Мы иллюстрируем эту интерпретацию с помощью плотности тени в наложенной горизонтальной полосе.
Теперь давайте посмотрим, на что похожи другие волновые функции. Волновая функция свободной частицы очень проста. Предположим, что частица, о которой мы говорим, является шариком-бусинкой, способным скользить по длинной горизонтальной проволоке. Потенциальная энергия шарика является одной и той же, безотносительно к его позиции, поэтому мы можем подозревать, что волновая функция не будет благоволить каким-либо особым областям. Медленная частица имеет низкую кинетическую энергию, поэтому ее волновая функция имеет лишь небольшую кривизну (рис. 7.6); другими словами, волновая функция медленно двигающейся частицы является однородной волной с большой длиной волны, в точности, как говорит нам соотношение де Бройля. Быстрая частица — с большой кинетической энергией — имеет волновую функцию с большой кривизной, так что она извивается вверх и вниз много раз на коротком интервале, и поэтому является однородной волной с очень короткой длиной волны. Обе эти волны просто являются тем, что предсказывает соотношение де Бройля.
Рис. 7.6.Диаграмма слева показывает две волновых функции для шарика-бусинки, движущегося по длинной горизонтальной проволоке с остановками на каждом ее конце. Одна функция соответствует маленькому импульсу, а другая большому. Диаграмма справа показывает для каждой точки проволоки вероятность обнаружения шарика, движущегося быстрее.
Где скорее всего мы найдем частицу? Давайте представим себе шарик, носящийся взад и вперед по длинной проволоке, поворачивая обратно на каждом ее конце, и рассмотрим его движение как случайное. Из-за того, что шарик движется с постоянной скоростью, в соответствии с классической физикой шансы найти его в любой точке проволоки равны. Квантовая механика дает иное предсказание. Чтобы предсказать, где будет обнаружен шарик, мы воспользуемся предложением Борна: вычислим квадрат волновой функции в каждой позиции и интерпретируем результат как вероятность обнаружить частицу в этой позиции. Как можно видеть из иллюстрации, частица с наибольшей вероятностью будет обнаруживаться в серии одинаковых областей, регулярно расположенных на проволоке, а не будет распределена совершенно однородно.
Теперь давайте посмотрим, как волновая функция свободной частицы соответствует принципу неопределенности, согласно которому, если мы знаем импульс, мы не можем знать положения, и наоборот. Волновая функция, подобная изображенной на рис. 7.6, распространяется по всей длине проволоки, поэтому мы не можем предсказать, где находится частица: она может быть в любом месте проволоки. С другой стороны, импульс мы знаем точно, поскольку знаем точно длину волны. Итак, мы знаем точный импульс, но ничего не можем сказать о положении, именно так, как этого требует принцип неопределенности. На самом деле длина волны дает нам только величинуимпульса: мы не знаем, движется ли частица направо или налево. Но из-за того, что частица не размазана по проволоке совершенно однородно, мы не остаемся в полном неведении о том, где она находится, и, таким образом, некоторое незнание относительно ее импульса (его направления) открывает возможность некоторого знания о том, где она находится (особенно, где она не находится). Вероятно, вы начинаете улавливать тонкость связи между знаниями о том, где вещи находятся и как быстро они движутся.
Пусть теперь случилось так, что мы знаем, в какой области проволоки на самом деле находится частица. Ее волновая функция выглядела бы похожей на изображенную на рис. 7.7 с резким пиком там, где частица скорее всего находится. Если мы хотим узнать импульс частицы, нам следовало бы определить длину волны этой волновой функции. Но функция с резким пиком не имеет определенной длины волны, поскольку она не является протяженной волной, так же как импульс звука — хлопок — не имеет определенной длины волны. Что же это говорит нам об импульсе частицы?
Рис. 7.7.Волновой пакет, образованный суперпозицией тридцати волновых функций, подобных изображенным на предыдущей иллюстрации, но с различными длинами волн. Хотя частица с большой вероятностью будет обнаружена в довольно четко определенной области пространства, мы ничего не можем сказать о том, какое из тридцати значений импульса будет преобладать. В дальнейшем обсуждении мы увидим, что этот волновой пакет движется подобно классической частице.
Мы можем представить волновую функцию с пиком, изображенную на иллюстрации, как результат сложения — технически выражаясь, суперпозиции —множества волн с различными длинами, каждая из которых соответствует определенному импульсу. В ситуации, изображенной на рисунке, эти волны, складываясь там, где их гребни совпадают, образуют пик реальной волновой функции и гасят друг друга там, где их гребни совпадают со впадинами. Такая суперпозиция волновых функций называется волновым пакетом. Когда мы хотим узнать величину импульса частицы с волновой функцией, подобной изображенной на рисунке, мы вынуждены сказать, что она может быть любойиз величин, представленных длинами тех волн, которые использовались при формировании волнового пакета. То есть наша частично локализованная частица имеет неопределенность импульса, в точности как того требует принцип неопределенности.
Если мы точно знаем, где находилась частица в некоторый момент времени, ее волновая функция должна была тогда представлять собой очень заостренный шип, с нулевой амплитудой всюду, кроме места, где находилась частица. Такой шип тоже является волновым пакетом, но чтобы получить бесконечную заостренность его положения, мы должны составить суперпозицию бесконечного числа волн с различными длинами, а значит, и импульсами. Принцип неопределенности является квантовой версией потери ориентации: вы либо знаете, где вы, но не знаете, куда вы идете, либо знаете, куда вы идете, но не знаете, где вы.
Концепция волнового пакета помогает нам навести мосты между квантовой механикой и привычной комфортабельностью классической механики, поскольку он несет некоторые черты классических частиц. Чтобы увидеть эту связь, давайте представим себе шарик на проволоке, которая не горизонтальна, а наклонена вниз слева направо. В классическом случае мы ожидаем, что шарик будет скользить по проволоке, двигаясь быстрее и быстрее. А что говорит квантовая механика?
Сначала нам нужно построить волновую функцию шарика и, проделав это, мы сможем узнать, что говорит нам уравнение Шредингера о ее кривизне. Поскольку энергия шарика постоянна (энергия сохраняется, глава 3). а его потенциальная энергия убывает слева направо, его кинетическая энергия возрастает слева направо вдоль проволоки. Возрастание кинетической энергии соответствует возрастанию кривизны. Мы можем ожидать, что волна будет иметь длину, укорачивающуюся слева направо. Такая волновая функция для частицы с абсолютно точно определенной полной энергией будет похожа на изображенную на рис. 7.8.
Рис. 7.8.Общая форма волновой функции для шарика-бусинки на проволоке, удерживаемой под углом к горизонтали, имеющего поэтому спадающую вправо потенциальную энергию. Заметьте, что длина волны становится все короче, по мере того как мы продвигаемся все дальше направо, что в классическом подходе соответствует возрастанию кинетической энергии частицы при скольжении вниз по проволоке.
- Предыдущая
- 65/110
- Следующая
