Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Журнал «Компьютерра» №46 от 15 декабря 2005 года - Журнал Компьютерра - Страница 18


18
Изменить размер шрифта:

В чем идея подобного объединения? Кластеры ассоциируются у нас с суперкомпьютерами, круглые сутки решающими на десятках, сотнях и тысячах вычислительных узлов какую-нибудь сверхбольшую задачу, но на практике существует и множество куда более «приземленных» кластерных применений. Часто встречаются кластеры, в которых одни узлы, дублируя другие, готовы в любой момент перехватить управление, или, например, одни узлы, проверяя получаемые с другого узла результаты, радикально повышают надежность системы. Еще одно популярное применение кластеров - решение задачи массового обслуживания, когда серверу приходится отвечать на большое количество независимых запросов, которые можно легко раскидать по разным вычислительным узлам[Обычно эту штуку называют серверной фермой, именно по такому принципу работает Google]. Однако рассказывать об этих двух, если угодно, «вырожденных» случаях кластерных систем практически нечего - из их краткого описания и так ясно, как они работают; поэтому разговор наш пойдет именно о суперкомпьютерах.

Итак, суперкомпьютер-кластер. Он состоит из трех основных компонентов: собственно «вычислялок» - компьютеров, образующих узлы кластера; интерконнекта, соединяющего эти узлы в сеть, и программного обеспечения, заставляющего всю конструкцию «почувствовать» себя единым компьютером. В роли вычислительных узлов может выступать что угодно - от старой никому не нужной персоналки до современного четырехпроцессорного сервера, причем их количество ничем не ограниченно (ну разве что площадью помещения да здравым смыслом). Чем быстрее и чем больше - тем лучше; и как эти узлы устроены, тоже неважно[Обычно для упрощения решения и непростой задачи балансировки нагрузки на разные узлы кластера все узлы в кластере делают одинаковыми, но даже это требование не абсолютно]. Гораздо интереснее обстоят дела с интерконнектом и программным обеспечением.

Как устроен кластер?

История развития кластерных систем неразрывно связана с развитием сетевых технологий. Дело в том, что, чем больше элементов в кластере и чем они быстрее, (и, соответственно, чем выше быстродействие всего кластера), тем более жесткие требования предъявляются к скорости интерконнекта. Можно собрать кластерную систему хоть из 10 тысяч узлов, но если вы не обеспечите достаточной скорости обмена данными, то производительность компьютера по-прежнему оставит желать лучшего. А поскольку кластеры в высокопроизводительных вычислениях - это практически всегда суперкомпьютеры[Программирование для кластеров - весьма трудоемкая задача, и если есть возможность обойтись обычным сервером SMP-архитектуры с эквивалентной производительностью, то так и предпочитают делать. Поэтому кластеры используются только там, где SMP обходится слишком дорого, а со всех практических точек зрения требующие такого количества ресурсов машины - это уже суперкомпьютеры], то и интерконнект для них просто обязан быть очень быстрым, иначе полностью раскрыть свои возможности кластер не сможет. В результате практически все известные сетевые технологии хотя бы раз использовались для создания кластеров[Я даже слышал о попытках использования в качестве интерконнекта стандартных портов USB], причем разработчики зачастую не ограничивались стандартом и изобретали «фирменные» кластерные решения, как, например, интерконнект, основанный на нескольких линиях Ethernet, включаемых между парой компьютеров в параллель. К счастью, с повсеместным распространением гигабитных сетевых карт, ситуация в этой области становится проще[Почти половину списка суперкомпьютеров Top 500 составляют кластеры, построенные на основе Gigabit Ethernet], - они довольно дешевы, и в большинстве случаев предоставляемых ими скоростей вполне достаточно.

Вообще, по пропускной способности интерконнект почти дошел до разумного предела: так, постепенно появляющиеся на рынке 10-гигабитные адаптеры Ethernet вплотную подобрались к скоростям внутренних шин компьютера, и если создать некий гипотетический 100-гигабитный Ethernet, то не найдется ни одного компьютера, способного пропустить через себя такой огромный поток данных. Но на практике десятигигабитная локальная сеть, несмотря на всю свою перспективность, встречается редко - технология Ethernet допускает использование только топологии «звезда», а в подобной системе центральный коммутатор, к которому подключаются все остальные элементы, обязательно будет узким местом. Кроме того, у Ethernet-сетей довольно большая латентность[Время между отправкой запроса одним узлом и получением этого запроса другим узлом], что тоже затрудняет их использование в «тесно связанных» задачах, где отдельные вычислительные узлы должны активно обмениваться информацией. Поэтому несмотря на почти предельную пропускную способность Ethernet-решений в кластерах широко используются сети со специфической топологией - старая добрая Myrinet, дорогая элитная Quadrics, новенькая InfiniBand и др. Все эти технологии «заточены» под распределенные приложения и обеспечивают минимальную латентность исполнения команд и максимальную производительность. Вместо традиционной «звезды» здесь из вычислительных элементов строятся плоские и пространственные решетки, многомерные гиперкубы, поверхности трехмерного тора и другие «топологически хитрые» объекты. Такой подход позволяет одновременно передавать множество данных по сети, гарантируя отсутствие узких мест и увеличивая суммарную пропускную способность.

Как развитие идей быстрого интерконнекта отметим, например, адаптеры сети InfiniBand, подключающиеся через специальный слот HTX к процессорной шине HyperTransport. Фактически адаптер напрямую подключается к процессору[Напомним, что в многопроцессорных системах на базе AMD Opteron межпроцессорное взаимодействие происходит именно по этой шине]! Лучшие образцы подобных решений обеспечивают столь высокую производительность, что построенные на их основе кластеры вплотную приближаются по характеристикам к классическим SMP-системам, а то и превосходят их. Так, в ближайшие несколько месяцев на рынке должен появиться интереснейший чип под названием Chorus, который по четырем шинам HyperTransport подключается к четырем или двум процессорам AMD Opteron, расположенным на одной с ним материнской плате, и с помощью трех линков InfiniBand может подключаться еще к трем другим «Хорусам», контролирующим другие четверки (или пары) процессоров. Один Chorus - это одна материнская плата и один сравнительно независимый узел с несколькими процессорами, подключаемый стандартными кабелями InfiniBand к остальным узлам. Внешне вроде бы получается кластер, но - только внешне: оперативная память у всех материнских плат общая. Всего в текущем варианте может объединяться до восьми «Хорусов» (и соответственно до 32 процессоров), причем все процессоры будут работать уже не как кластер, а как единая SUMA-система, сохраняя, однако, главное достоинство кластеров - невысокую стоимость и возможность наращивания мощности. Такой вот получается «суперкластеринг», стирающий границы между кластерами и SMP.

Впрочем, все эти новомодные решения совсем не дешевы, - а ведь начинали мы с невысокой себестоимости кластера. Поэтому «Хорусы» да «Инфинибенды», стоящие солидных денег (несколько тысяч долларов на каждый узел кластера, что хоть и гораздо меньше, чем у аналогичных SMP-систем, но все равно дорого), встречаются нечасто. В секторе «академических» суперкомпьютеров, принадлежащих университетам, обычно используются самые дешевые решения, так называемые Beowulf-кластеры, состоящие из набора персоналок, соединенных гигабитной или даже стомегабитной Ethеrnet-сетью и работающих под управлением бесплатных операционных систем типа Linux. Несмотря на то что собираются такие системы буквально «на коленке», иногда из них все равно вырастают сенсации: к примеру, «биг-мак» - собранный из 1100 обычных «макинтошей» самодельный кластер, обошедшийся организаторам всего в 5,2 млн. долларов и умудрившийся занять в 2003 году третье место в рейтинге Top 500.