Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

101 ключевая идея: Астрономия - Брейтот Джим - Страница 6


6
Изменить размер шрифта:

См. также статьи «Цефеиды», «Закон Хаббла», «Звездная величина», «Красное смещение»

ЗАКОНЫ КЕПЛЕРА

Немецкий математик и астроном Иоганн Кеплер (1571–1630) жил в Праге в первые три десятилетия XVII века. Он измерил орбиты каждой планеты Солнечной системы и определил периоды их обращения вокруг Солнца. На основании своих измерений он сформулировал три закона, описывающих движения планет.

Первый закон Кеплера

Первый закон Кеплера гласит, что каждая планета движется по эллиптической орбите, в одном из фокусов которой находится Солнце.

Второй закон Кеплера

Второй закон Кеплера гласит, что скорость продвижения воображаемой линии, соединяющей центр планеты с центром Солнца, меняется обратно пропорционально квадрату расстояния от планеты до Солнца. [4]

Кеплер знал, что расстояние между Марсом и Солнцем в перигелии (кратчайшее расстояние) составляет 0,9?r a, где r a— расстояние в афелии (наибольшее расстояние). Он обнаружил, что видимое продвижение планеты в афелии составляет 0,81?r n, где r n— ее видимое продвижение в перигелии. Это взаимосвязь расшифровывалась как квадрат расстояния в перигелии к расстоянию в афелии (см. рисунок). Отсюда следует, что планета вблизи перигелия имеет скорость большую, чем вблизи афелия, то есть движение планеты неравномерно.

Третий закон Кеплера

Третий закон Кеплера гласит, что квадраты времен обращений планет вокруг Солнца относятся как кубы их средних расстояний от Солнца. Этот закон можно записать в виде уравнения, где период обращения (Т) исчисляется в годах, а средний радиус (а) — в астрономических единицах T 2= a 3.

Законы Кеплера были доказаны математически Исааком Ньютоном с использованием общей теории тяготения. Доказательство можно привести в виде уравнения, где масса планеты выражается в дробной величине от массы Солнца:

масса?период 2= средний радиус 3.

См. также статьи «Ньютон», «Орбиты планет».

ЗАКОН ТЯГОТЕНИЯ НЬЮТОНА

До того как Ньютон сформулировал всеобщий закон тяготения, считалось, что объекты обладают свойством тяжести, которое тянет вниз, и летучести, которое толкает их вверх. Ньютон развеял концепцию летучести и показал, что между двумя любыми объектами существует сила гравитационного притяжения. Он объяснил движение объекта, падающего на Землю, сказав, что между объектом и Землей существует сила взаимного тяготения. Ньютон воспользовался той же идеей для объяснения движения Луны вокруг Земли и планет вокруг Солнца. Если бы сила тяготения между Солнцем и планетами внезапно перестала существовать, каждая планета продолжала бы поступательные движения по прямой линии, расположенной по касательной к ее орбите. Сила гравитационного притяжения между Солнцем и планетами заставляет планеты обращаться вокруг Солнца.

Ньютон считал, что сила тяготения между двумя объектами, представляемыми в виде точек, пропорциональна массе каждого объекта и обратной величине квадрата расстояния между двумя объектами. Для двух таких точечных объектов с массой m 1и m 2при расстоянии r он выявил следующее уравнение для силы тяжести F между двумя массами.

где G — коэффициент пропорциональности, который он назвал гравитационной постоянной.

Выбор r 2в уравнении Ньютона вместо r или r 3или какой-либо другой степени r был обусловлен его предыдущими открытиями законов движения. Он показал, что тело, которое находится в постоянном круговом движении, всегда испытывает воздействие силы ускорения, направленной к центру круга и равной квадрату скорости, деленному на радиус. Связав это уравнение со своей формулой для силы тяготения, Ньютон доказал третий закон Кеплера для движения планет. Любая другая степень r в его формуле не могла бы доказать третий закон Кеплера. Следующим шагом Ньютона была попытка распространить свои идеи за пределы точечных объектов. Это оказалось очень трудно, и в конце концов после многих лет исследований он доказал, что закон тяготения можно применить к любым двум объектам при условии, что расстояние в его уравнении является расстоянием между двумя центрами тяжести.

См. также статьи «Ньютон», «Законы Кеплера».

ЗАКОН ХАББЛА

Эдвин Хаббл пользовался телескопом обсерватории Маунт-Уилсон с рефлектором диаметром 2,5 метра. Телескоп был установлен на горе Уилсон в Калифорнии, и Хаббл использовал его для оценки расстояний до двух десятков галактик с известным красным смещением, расположенных в пределах 2 млн. парсеков от Галактики Млечный Путь (1 парсек = 3,26 светового года). Результаты его исследований, опубликованные в 1929 году, показали, что с расстоянием красное смещение увеличивается. При нанесении результатов на диаграмму, связывающую красное смещение и расстояние, стало ясно, что скорость удаления галактики пропорциональна расстоянию до нее: v = Hd. Это взаимоотношение называется законом Хаббла. Величина Н в этом отношении называется постоянной Хаббла.

Итак, скорость отдаления v = Hd, где d — расстояние до галактики.

Мильтон Хьюмасон произвел дальнейшие измерения с использованием телескопа обсерватории. К 1935 году Хаббл и Хьюмасон опубликовали результаты наблюдений для более чем 140 галактик, расположенных на расстоянии более 300 млн. парсеков и отдаляющихся со скоростями свыше 40 000 км/с. Эти результаты подтверждали первоначальное открытие Хаббла. Ученые оценили величину постоянной Хаббла в 160 км/с на миллион световых лет расстояния. Дальнейшие измерения с использованием телескопов большей мощности и более современных детекторов снизили величину постоянной Хаббла до ее нынешнего значения — около 20 км/с на миллион световых лет.

Закон Хаббла является экспериментальным законом, применимым в ограниченном масштабе измерений. Возможные объяснения этого закона были предметом бурной дискуссии в течение полувека после открытия. Теперь принято считать, что закон Хаббла является следствием расширения Вселенной после первичного взрыва, который произошел в период между 10 и 15 млрд. лет назад. Этот взрыв, известный как Большой Взрыв, привел к созданию пространственно-временного континиума. Величина Н имеет очень важное значение, поскольку она используется для оценки возраста Вселенной.

См. также статьи «Большой Взрыв», «Расширение Вселенной», «Красное смещение».

ЗВЕЗДНАЯ ВЕЛИЧИНА

Считается, что наша нынешняя система классификации звезд по их блеску была создана во II веке до нашей эры Гиппархом, который разделил звезды на 6 категорий согласно их яркости.

Ярчайшие звезды назывались звездами первой величины, а самые тусклые, едва видимые невооруженным глазом, назывались звездами шестой величины. В XIX веке астрономы измерили интенсивность светового потока для звезд разной величины и перевели шкалу звездной величины на научную основу; теперь различие в 5 звездных величин соответствовало стократному увеличению количества света. Таким образом, возрастание на одну звездную величину соответствует увеличению яркости в 2,512 раза, следовательно, отношение блеска звезд первой звездной величины к звездам шестой величины составляет 2,512?2,512?2,512?2,512 x 2,512 = 100. Классификация от первой до шестой величины была продолжена в оба конца шкалы, так что звездам, видимым лишь с помощью телескопа, была присвоена звездная величина более шестой, а очень ярким звездам были присвоены значения от 1 до 0 и менее О. [5]

вернуться

4

Кеплер сформулировал второй закон в следующем виде: радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади.

вернуться

5

После точного измерения блеска звезд пришлось ввести не только отрицательные, но и дробные звездные величины!