Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Респираторная медицина. Руководство (в 2-х томах) - Чучалин А. Г. - Страница 36
Термины гипо и гипервентиляция не согласуются с терминами гипо и гиперпноэ (по отношению к минутной вентиляции) или тахи и брадипноэ (по отношению к количеству дыхательных движений в минуту). Так, у многих пациентов, страдающих болезнями органов дыхания, отмечается гиповентиляция, хотя может определяться как гиперпноэ, так и тахипноэ при нормальном уровне метаболизма. Это объясняется тем, что пациент вентилирует большой объем мертвого пространства.
Увеличение синтеза двуокиси углерода может быть вызвано увеличением скорости метаболизма (например, при физической активности, лихорадке, перевозбуждении) либо образование СО<sub>2</sub> из запасов ионов бикарбоната может быть увеличено при остром метаболическом ацидозе (например, при острых сердечнолегочных патологических состояниях). Итак, гиповентиляция - это несоответствие вентиляции и продукции двуокиси углерода, которая проявляется в увеличении P<sub>CO</sub><sub>2</sub>. Гипервентиляция довольно часто является респираторным механизмом компенсации метаболического ацидоза; снижение P<sub>CO</sub><sub>2</sub> сопровождается пропорциональным увеличением pH.
В отличие от P<sub>CO</sub><sub>2</sub> интерпретация значимости изменений концентрации HCO<sub>3</sub><sup> - </sup> весьма сложна. Может ли HCO<sub>3</sub><sup> - </sup>рассматриваться как «нереспираторный» или «метаболический» параметр? «Метаболический» параметр должен быть независим от изменений P<sub>CO</sub><sub>2</sub>. Однако в некоторых растворах концентрация HCO<sub>3</sub><sup> - </sup> может изменяться значительно по мере изменений CO<sub>2</sub>. В образце крови in vitro концентрация HCO<sub>3</sub><sup> - </sup> заметно увеличивается с увеличения CO<sub>2</sub>. Образование HCO<sub>3</sub><sup> - </sup> из CO<sub>2</sub> увеличивается в присутствии анионов буфера, которые представлены гемоглобином, белками и неорганическим фосфатом. Гемоглобин особенно важен и эффективен как буфер для ионов H<sup>+</sup> по нескольким причинам. Во-первых, концентрация гемоглобина высока в эритроцитах; вовторых, изобилие имидазольных групп в молекуле гемоглобина, которые имеют pK, близкую к pH внутри клеток, и может связывать и высвобождать большое количество H<sup>+</sup>; в-третьих, молекулы кислорода, связанные с гемоглобином, влияют на буферную емкость молекул гемоглобина. При низких значениях P<sub>O</sub><sub>2</sub>, которые наблюдаются в системных капиллярах и венозной крови, сродство молекул гемоглобина к ионам H<sup>+</sup> увеличивается и большее количество CO<sub>2</sub> превращается в анионы HCO<sub>3</sub><sup> - </sup>. При оксигенации крови в легочных капиллярах ионы H<sup>+</sup> высвобождаются из гемоглобина, CO<sub>2</sub> образуется из HCO<sub>3</sub><sup> - </sup>и переносится в альвеолярный газ.
Диаграмма Davenport и метод Sigaard - Anderson могут быть использованы для того, чтобы in vitro предсказать изменения кислотноосновного состояния крови при добавлении кислот или оснований или при нахождении в условиях с высоким или низким парциальным напряжением CO<sub>2 </sub>[5 - 7].
Истинный ответ HCO<sub>3</sub><sup> - </sup> на острое изменение парциального напряжения CO<sub>2</sub> может быть определен эмпирически у здоровых лиц. Было показано, что после экспозиции 10% CO<sub>2</sub> в течение 10 мин P<sub>CO</sub><sub>2</sub> увеличивалось до 78 мм рт.ст., а концентрация HCO<sub>3</sub><sup> - </sup> в плазме артериальной крови повышалась только на 3 мэкв/л [8]. При гипервентиляции отмечается тенденция к снижению HCO<sub>3</sub><sup> - </sup> [9]. Например, когда P<sub>CO</sub><sub>2</sub> уменьшается с 40 до 20 мм рт.ст., концентрация HCO<sub>3</sub><sup> - </sup> в плазме крови снижается приблизительно на 5 мэкв/л. Поскольку отмечаются небольшие изменения в концентрации HCO<sub>3</sub><sup> - </sup> в ответ на острые изменения P<sub>CO</sub><sub>2</sub> [10], клиницисты рассматривают анион HCO<sub>3</sub><sup> - </sup> как метаболический параметр.
Умеренное увеличение анионов HCO<sub>3</sub><sup> - </sup> вслед за резким повышением парциального напряжения CO<sub>2</sub> может объясняться тем, что организм в целом является менее эффективной системой, чем эритроциты. Концентрация HCO<sub>3</sub><sup> - </sup> в легочных капиллярах увеличивается быстро, когда парциальное напряжение CO<sub>2</sub> в альвеолярном газе повышено. Когда дополнительное количество растворенного в крови углекислого газа достигает периферических тканей и диффундирует из сосудов, концентрация анионов HCO<sub>3</sub><sup> - </sup> в плазме крови должна снижаться, а концентрация анионов HCO<sub>3</sub><sup> - </sup> в тканях должна увеличиваться. Поскольку буферная емкость тканей слабее, чем буферная емкость крови, увеличение концентрации анионов HCO<sub>3</sub><sup> - </sup> в тканях менее выражено. Концентрация анионов HCO<sub>3</sub><sup> - </sup> в плазме крови превышает таковую в тканях, и анионы HCO<sub>3</sub><sup> - </sup> диффундируют из капилляров в обмен на ионы хлора. При сохранении высокого содержания CO<sub>2</sub> в альвеолярном воздухе парциальное напряжение CO<sub>2</sub> в крови, возвращенной к легким, увеличивается. Это приводит к меньшему увеличению концентрации анионов HCO<sub>3</sub><sup> - </sup>, чем может наблюдаться исходно или при исследовании на изолированном образце крови.
type: dkli00030
МЕТОД «СИЛЬНЫХ ИОНОВ»
В физиологии «теория сильных ионов» впервые была применена P.A. Stewart. «Метаболический» параметр разделяют на два компонента. Выделяют «сильные» кислоты и основания, которые полностью диссоциируют, и молекулы слабых буферов, которые частично диссоциируют при физиологическом уровне pH. «Сильные» ионы включают электролиты и различные органические и неорганические ионы, такие, как лактат, ацетоацетат и сульфат. Слабые буферы состоят в основном из белков сыворотки и фосфатов. Величина pH рассчитывается на основании трех допущений: общая концентрация ионов и кислотноосновных пар известна и сохраняется неизменной; раствор остается электронейтральным; константы диссоциации каждых буферов известны. И уровень pH, и концентрация анионов HCO<sub>3</sub><sup> - </sup> являются зависимыми величинами, которые могут быть рассчитаны с учетом концентраций сильных анионов и сильных катионов, а также P<sub>СО2. </sub>Увеличение хлорида по отношению к натрию приводит к уменьшению разницы сильных ионов и повышению кислотности плазмы. Это объясняет тот факт, почему введение солевого раствора приводит к ацидозу. Метод «сильных ионов» позволяет точнее оценить концентрацию ионов водорода, чем уравнение Henderson - Hasselbalch [10].
Использование данного подхода в клинической практике ограничено изза весьма сложного характера взаимоотношений сильных ионов. Для решения этих уравнений необходимо знать концентрации белков и фосфатов, которые в момент проведения анализа крови неизвестны. В клинических условиях парциальное напряжение CO<sub>2</sub> и pH измеряются, а концентрация анионов HCO<sub>3</sub><sup> - </sup> рассчитывается либо из этих параметров, либо из общей концентрации веществ, содержащих CO<sub>2</sub><sub>. Традиционный метод </sub>Henderson - Hasselbalch позволяет оценить ацидоз и алкалоз, при которых не выявляется разницы между сильными и слабыми кислотами и основаниями.
- Предыдущая
- 36/757
- Следующая