Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Респираторная медицина. Руководство (в 2-х томах) - Чучалин А. Г. - Страница 118
Принцип объемного или непрерывного сканирования создает совершенно новые возможности для постпроцессорной обработки полученных данных, в частности для преобразования аксиальных томограмм в многоплоскостные реформации и трехмерные изображения. Получаемые изображения не зависят от различной глубины вдоха или выдоха пациента, а возможности построения томограмм с частичным взаимным наложением сводят к минимуму ступенчатые артефакты, свойственные многоплоскостным реформациям при КТ. Результаты исследования в этом случае становятся более наглядными, демонстративными, доступными для пространственного восприятия не только специалистов рентгенологов, но и лечащих врачей.
Многослойная или мультидетекторная спиральная компьютерная томография (МСКТ или МДКТ) определила существенный прорыв в клиническом применении всех томографических технологий. Технология была впервые представлена в 1999 г. и в последние годы приобрела статус основной модификации компьютерно-томографических установок. Суть данной технологии заключается в том, что при вращении рентгеновской трубки вокруг пациента пучок рентгеновских лучей разделяется на несколько томографических слоев с помощью так называемых многорядных детекторов (рис. 5-22). Во всех прошлых поколениях КТ установок имелся только один ряд детекторов, что позволяло получать одну томограмму за одно вращение рентгеновской трубки. В настоящее время разработаны установки, позволяющие получать от 2 до 64 томографических срезов за одно вращение рентгеновской трубки. Использование МСКТ позволяет реализовать два основных преимущества данной технологии: увеличить скорость сканирования и повысить пространственное разрешение.
path: pictures/0522a.png
path: pictures/0522b.png
Рис. 5-22. Схема многослойной КТ. Аппарат с одной линейкой детекторов (а) и 4 линейками детекторов (б).
ФИЗИЧЕСКИЕ ПРИНЦИПЫ КТ
Основой компьютерно-томографического процесса является регистрация интенсивности ослабленного рентгеновского излучения во множестве проекций. В англоязычной литературе этот процесс определяется как data acquisition - сбор или регистрация данных.
КОЭФФИЦИЕНТ ЛИНЕЙНОГО ОСЛАБЛЕНИЯ
Эффект ослабления излучения - attenuation - возникает в результате потери энергии излучения при прохождении его через среду и взаимодействия с ней. Этот процесс может быть выражен количественно, с помощью коэффициента линейного ослабления микро - lineal attenuation coefficient. Величина коэффициента микро зависит от исходной энергии фотонов излучения, а также от химического состава и физической плотности вещества. Различная степень ослабления рентгеновского излучения лежит в основе контраста рентгеновского изображения, т.е. возможности различать отдельные объекты исследования в зависимости от их химических и физических свойств. В КТ, особенно при исследовании мягких тканей, величина коэффициента ослабления в наибольшей степени зависит от физической плотности вещества, в связи с чем этот показатель часто определяют как плотность.
Чем больше интенсивность рентгеновского луча, достигшего детектор, тем сильнее электрический сигнал, возникающий в фотоэлектронном преобразователе детектора. Соотношение исходной интенсивности рентгеновского излучения I<sub>0 </sub>и интенсивности прошедшего через объект излучения I выражается следующим уравнением:
I = I<sub>0 </sub>e <sup>-</sup><sup>микро</sup><sup> </sup><sup>d</sup>,
где:
I<sub>0 </sub> - интенсивность исходного рентгеновского излучения;
I - интенсивность ослабленного рентгеновского излучения;
микро - линейный коэффициент ослабления рентгеновского излучения;
d - расстояние от источника излучения до воспринимающего устройства;
e - математическая константа - основание натурального логарифма.
В соответствии с приведенным уравнением коэффициент линейного ослабления может быть вычислен по следующей формуле:
микро d = lnI - lnI<sub>0</sub>.
В реальном исследовании измеряется множество коэффициентов ослабления соответственно количеству детекторов в каждой использованной проекции. Результатом однократного измерения является профиль исследуемого объекта в данной проекции. Фундаментальным способом вычисления коэффициентов ослабления является метод фильтрованных обратных проекций, который используется в большинстве вычислительных машин КТ-установок.
ПРОЕКЦИИ СБОРА ДАННЫХ
Коэффициенты ослабления при КТ-исследовании определяются во время движения рентгеновской трубки, но не постоянно, а в определенных ее позициях или, как это принято называть в КТ, проекциях. Количество проекций, в которых производится сбор данных, может варьировать от 180 до 720. Это означает, что в течение одного цикла вращения источника излучения вокруг объекта детекторы воспринимают рентгеновское излучение 360 раз, при смещении источника на каждый последующий градус окружности. Таким образом, каждый элемент объекта исследования «осматривается» из сотен проекций, а совокупность полученных проекционных данных анализируется вычислительной машиной с помощью специальных математических программ - алгоритмов реконструкции. Увеличение числа проекций способствует повышению пространственной разрешающей способности, но увеличивает время сканирования (время сбора проекционных данных). Уменьшение числа проекций позволяет ускорить процесс сканирования при одновременном ухудшении пространственного разрешения.
Возможность визуализировать наиболее мелкие элементы изображения определяется как пространственная разрешающая способность или пространственное разрешение. В КТ пространственное разрешение измеряется экспериментально, с помощью фантома. При этом учитывается максимальное количество пар линий на сантиметр, которое можно различить на представленном изображении. В установках начала 90-х годов пространственное разрешение обычно составляет 3 - 5 пар л/см, в более современных аппаратах этот параметр может достигать 7 - 15 пар л/см. Однако в среднем пространственное разрешение при КТ меньше, чем при пленочной рентгенографии. Для сравнения, на обычной обзорной рентгенограмме при правильном подборе комбинации экран/пленка теоретически удается различить 15 - 20 пар л/см. Степень пространственного разрешения в КТ зависит не только от конструктивных особенностей аппарата, но и от ряда технологических параметров. К их числу относятся величина поля изображения, толщина пучка рентгеновского излучения и выбранный алгоритм реконструкции томограммы.
МАТРИЦА ТОМОГРАММЫ
После измерения детекторами ослабленного рентгеновского излучения электрические сигналы преобразуются (кодируются) в цифровые значения коэффициентов ослабления, которые распределяются в электронной матрице томограммы.
Матрица томограммы представляет собой электронную таблицу с равным количеством строк и столбцов (рис. 5-23). Матрица отражает пространственное распределение коэффициентов ослабления в изучаемом слое. Первоначально в матрицу записываются коэффициенты ослабления в каждой из использованных проекций. Совокупность всех исходных коэффициентов ослабления составляет так называемые проекционные данные (projection data) или сырые данные (raw data). Следующий этап заключается в формировании единой матрицы поперечной томограммы из набора проекционных данных. Конечное число, записанное в каждой ячейке матрицы, является результатом вычисления среднего значения коэффициента ослабления в использованных проекциях с помощью определенной математической программы - алгоритма реконструкции томограммы.
path: pictures/0523.png
Рис. 5-23. Матрица КТ: d - толщина томографического слоя, ab - пиксель, abd - воксель.
Матрица томограммы состоит из элементарных ячеек - вокселей (voxel - volume element, элемент объема). В каждый воксель записываются суммарные коэффициенты ослабления рентгеновского излучения, собранные детекторами в различных проекциях и выраженные в числах Хаунсфилда. В современных установках матрица томограммы обычно состоит из 512<sup>2</sup> вокселей.
- Предыдущая
- 118/757
- Следующая
