Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - Страница 31
Предположим, что мы нашли множество R («R» — рисунок) натуральных чисел, которое мы можем вывести каким-либо формальным путем — вроде множества составных чисел. Предположим, что его дополнением является множество F («F» — фон) — простые числа. Вместе взятые, R и F дают все натуральные числа. Мы знаем правило, позволяющее вывести все числа множества R, для чисел множества F такого правила не существует. Важно, что если числа R выводятся исключительно в возрастающем порядке, то мы всегда можем охарактеризовать F. Трудность заключается в том, что многие р. с. множества производятся при помощи таких методов, которые выводят элементы в произвольном порядке, так что не известно, появится ли какое-либо число, до сих пор пропускаемое, если подождать еще чуть-чуть.
На вопрос «Все ли рисунки рекурсивны?» мы ответили отрицательно. Теперь мы видим что придется ответить отрицательно и на аналогичный вопрос математиков «Все ли множества рекурсивны?» Имея это в виду, давайте вернемся к этому расплывчатому понятию «формы». Обратимся снова к нашим множествам R — рисунки и F — фон. Легко согласиться с тем, что все числа во множестве R имеют какую-то общую «форму» — но можно ли сказать то же самое о числах множества F? Странный вопрос. С самого начала имея дело с бесконечным множеством всех натуральных чисел, весьма сложно прямо и четко определить «дырки», остающиеся в списке после изъятия оттуда неких чисел. Таким образом, возможно что на самом деле у этих дырок нет никаких общих характеристик «формы». Неясно, стоит ли вообще использовать здесь такое соблазнительное словечко как «форма». Может быть лучше не определять этого понятия оставив ему некую интуитивную гибкость.
Вот вам еще одна головоломка, над которой вы можете поразмыслить в связи с изложенным выше Можете ли вы охарактеризовать следующее множество чисел (или его негативное пространство)?
1 3 7 12 18 26 35 45 56 69
Чем данная последовательность напоминает рисунок РИСУНОК-РИСУНОК?
Как же насчет формальной системы для вывода простых чисел? Как это сделать? Способ состоит в том чтобы, не останавливаясь на умножении, обратиться прямо к неделимости, представив ее позитивно. Ниже дана схема аксиом и правило вывода теорем, представляющих понятие числа, не являющегося делителем других чисел (ND = не делитель).
СХЕМА АКСИОМ: xyNDx, где x и у — строчки тире
Например, -----ND--, где x заменен на «--» и y — на «---»
ПРАВИЛО: Если xNDy является теорема, то xNDxу также будет теоремой
Приложив это правило дважды, вы можете вывести теорему
-----ND------------
которая интерпретируется как «5 не делитель 12». Однако ---ND------ не является теоремой. В чем будет ошибка, если вы попытаетесь вывести эту строчку?
Чтобы определить, что данное число простое, у нас должны быть какие-то сведения о его свойствах неделимости. В частности, мы хотим знать, что это число не делится на 2, 3, 4, и т. д., до числа, меньшего его на единицу. Однако в формальных системах мы не можем позволить себе таких расплывчатых формулировок как «и так далее». Здесь нужна исчерпывающая точность. Нам бы хотелось иметь возможность сказать на языке системы: «число Z свободно от делителей до X» (SOD = свободно от делителей), имея в виду, что не одно число между 2 и X не является делителем Z. Это можно сделать, но здесь есть небольшой трюк. Если хотите, можете попытаться найти его.
Решение заключается в следующем:
ПРАВИЛО: Если --NDz является теоремой, то zSOD-- также будет теоремой.
ПРАВИЛО: Если zSODx и x-NDz являются теоремами, то zSODx также будет теоремой.
Эти два правила, в совокупности, характеризуют понятие свободы от делителей. Все что нам нужно, это указать, что простые числа — это числа, свободные от делителей, включая число на единицу меньшее их самих:
ПРАВИЛО: Если z-SODz является теоремой, то Pz- также будет теоремой.
Не будем забывать, что 2 — тоже простое число!
АКСИОМА: P--
Вот и все, что нам необходимо. Принцип формального выражения «просто-численности» заключается в том, что существует метод проверки, не требующий никакого отступления назад. Вы всегда двигаетесь вперед, проверяя данное число на делимость — сначала на 2, потом на 3, и так далее. Именно эта «монотонность» или однонаправленность — отсутствие игры между укорачивающими и удлиняющими правилами — позволила нам уловить суть простых чисел. И именно этой потенциальной сложностью формальных систем, могущих вместить сколько угодно взаимодействий между движением вперед и назад, объясняются такие ограничивающие результаты как Теорема Гёделя и Проблема Остановки Тюринга, как и тот факт, что не все рекурсивно счетные множества рекурсивны.
Акростиконтрапунктус
Ахилл: Хорошая у вас коллекция бумерангов, я такой нигде не видал!
Черепаха: Обыкновенная, не преувеличивайте, пожалуйста. У любой Черепахи можно увидеть коллекцию ничуть не хуже.
Ахилл: Феноменально! Вы, Черепахи, никогда не перестанете удивлять меня своей любовью к собиранию бумерангов.
Черепаха: Шутить изволите? Да страсть к коллекционированию этого оружия у нас в крови. А сейчас, не угодно ли пройти в гостиную?
Ахилл: Только после Вас, как обычно, госпожа Черепаха. (Следуя за Черепахой, Ахилл входит в гостиную и направляется в угол комнаты.) Я вижу, что у вас также неплохое собрание пластинок. Какую музыку вы предпочитаете?
Черепаха: Актуальный вопрос. Видите ли, хотя я всегда была и остаюсь поклонницей Баха, должна признаться, что сейчас я увлекаюсь довольно необычной музыкой.
Ахилл: Да? Что же это за музыка?
Черепаха: Такая, о которой вы, скорее всего, никогда не слыхали. Я называю ее «разбивальная музыка».
Ахилл: Едва ли не самая поразительная вещь, которую я слыхал от вас за последнее время. Что значит это необычное название?
Черепаха: Рада удовлетворить ваше любопытство. Эта музыка — для разбивания патефонов.
Ахилл: О ужас!
Черепаха: Вы полагаете?
Ахилл: С ума сойти! Воображаю, как вы, пританцовывая с кувалдой в руке, сокрушаете один патефон за другим под звуки «Битвы при Виттории» Бетховена.
Черепаха: Какое у вас образное мышление! Должна вас разочаровать, эта музыка не совсем то, что вы предполагаете. Однако ее истинная природа тоже любопытна. Могу дать вам кое-какие разъяснения…
Ахилл: Интересно… Я весь внимание!
Черепаха: Йоркширский мой приятель, старый Краб (вы с ним, часом, не знакомы?) пришел ко мне однажды с визитом…
Ахилл: Архибольшая умница, этот Краб. Я много о нем наслышан, но сам с ним никогда не встречался. Уверен, что знакомство со стариком принесло бы мне немалое удовольствие.
Черепаха: Конечно, он личность незаурядная. Надо бы мне устроить вашу встречу; может быть, мы все как-нибудь увидимся в парке на прогулке. Думаю, что вы понравитесь друг другу!
Ахилл: Расчудесная идея! Буду ждать этого с нетерпением… Однако мы отклонились от темы вы, кажется, хотели объяснить мне, что такое разбивальная музыка?
Черепаха: Ох, да, чуть не забыла. Так вот, пришел, значит, Краб ко мне в гости. Вы, наверное, слыхали, что у него всегда была страсть ко всяческим машинкам и приспособлениям; в то время он прямо-таки сходил с ума по патефонам. Он тогда только что приобрел свой первый патефон и, будучи наивным и доверчивым покупателем, поверил во всю ту белиберду, что нам обычно говорят усердные клерки в надежде сбыть свой товар. На этот раз клерк объявил, что понравившийся Крабу патефон может верно воспроизвести любой звук. Короче говоря, Краб уверился в том, что он купил Идеальный Патефон.
- Предыдущая
- 31/233
- Следующая