Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Удивительная палеонтология. История земли и жизни на ней - Еськов Кирилл Юрьевич - Страница 14


14
Изменить размер шрифта:

Итак, Эйгену «всего-навсего» осталось найти реальный класс химических реакций, компоненты которых вели бы себя подобно дарвиновским видам, т.е. обладали бы способностью «отбираться» и, соответственно, эволюционировать в сторону увеличения сложности организации. Именно такими свойствами, как выяснилось, и обладают нелинейные автокаталитические цепи, названные Эйгеном гиперциклами. Здесь необходимо дать некоторые пояснения.

Простейшим случаем каталитической реакции является превращение исходного вещества (субстрат – S) в конечное (продукт – P) при участии единственного фермента (E); уже этот механизм требует по меньшей мере трехчленного цикла, который называется реакционным (рис. 14,а). Существуют, однако, и гораздо более сложные реакционные циклы. Таков, например, цикл Кребса – 12-членный цикл, лежащий в основе клеточного дыхания: он катализирует превращение молекулы двухатомной уксусной кислоты (в форме ацетил-кофермента a–CH3CO Koa) в 2 молекулы CO2 и 8 атомов H (рис. 14,б). Другой пример – углеродный цикл Бете – Вайцзеккера, обеспечивающий светимость Солнца за счет превращения 4 атомов водорода 1H в атом гелия 4He (рис. 14,в). Несмотря на серьезнейшие различия между этими реакциями (первая является химической, а вторая – ядерной), они обладают фундаментальным сходством: в обеих высокоэнергетическое вещество превращается в продукты, бедные энергией, при сохранении (т.е. циклическом воспроизведении) промежуточных компонентов (интермедиатов).

Следующий за реакционным циклом уровень организации представляет собой каталитический цикл, в котором некоторые (или все) интермедиаты сами являются катализаторами для одной из последующих реакций. Каждый из них (Ei+1) образуется из высокоэнергетического субстрата (S) при каталитической поддержке от предыдущего интермедиата (Ei) (рис. 14,г). Таким образом, каталитический цикл как целое эквивалентен автокатализатору. Если же такие автокаталитические (т.е. самовоспроизводящиеся) единицы оказываются, в свою очередь, сочленены между собой посредством циклической связи, то возникает каталитический гиперцикл. Следовательно, гиперцикл основан на нелинейном автокатализе (автокатализе как минимум второго порядка) и представляет собой следующий, более высокий уровень в иерархии автокаталитических систем. Он состоит из самоинструктирующихся единиц (Ii) с двойными каталитическими функциями: в качестве автокатализатора интермедиат Ii способен инструктировать свое собственное воспроизведение; и при этом он катализирует воспроизведение из высокоэнергетического субстрата (S) следующего в цепи интермедиата (Ii+1) (рис. 14,д).

Рис. 14. Реакционные циклы:
а – абстрактный трехчленный цикл; б – цикл Бете – Вайцзеккера; в – цикл Кребса; г – каталитический цикл; д – гиперцикл (по Эйгену, 1983)

Гиперциклы (одним из простейших примеров которых является размножение РНК-содержащего вируса в бактериальной клетке) обладают рядом уникальных свойств, порождающих дарвиновское поведение системы. Гиперцикл конкурирует (и даже более ожесточенно, чем дарвиновские виды) с любой самовоспроизводящейся единицей, не являющейся его членом; он не может стабильно сосуществовать и с другими гиперциклами, если только не объединен с ними в автокаталитический цикл следующего, более высокого порядка. Состоя из самостоятельных самовоспроизводящихся единиц (что гарантирует сохранение фиксированного количества информации, передающейся от «предков» к «потомкам»), он обладает и интегрирующими свойствами. Таким образом, гиперцикл объединяет эти единицы в систему, способную к согласованной эволюции, где преимущества одного индивида могут использоваться всеми ее членами, причем система как целое продолжает интенсивно конкурировать с любой единицей иного состава.

Итак, именно гиперцикл (который сам по себе есть еще чистая химия) является тем критическим уровнем, начиная с которого сложность неймановского «самовоспроизводящегося автомата» перестает быть вырождающейся. Эта концепция, в частности, вполне удовлетворительно описывает возникновение на основе взаимного катализа системы «нуклеиновая кислота – белок» (решающее событие в процессе возникновения жизни на Земле). Вместе с тем сам Эйген подчеркивает, что в ходе реальной эволюции гиперцикл вполне мог «вымереть» – после того, как ферментные системы следующего поколения (с более высокой точностью репродукции) сумели индивидуализировать интегральную систему в форме клетки.

Однако на процесс возникновения жизни можно посмотреть и с несколько иной позиции, не биохимической, а геохимической, как это делает, например, А.С. Раутиан (1995). Мы уже говорили о том, что с общепланетарной точки зрения жизнь – это способ упорядочения и стабилизации геохимических круговоротов. Откуда же берется сам геохимический круговорот?

Открытый космос холоден (лишь на 4°С теплее абсолютного нуля) потому, что концентрация вещества в нем ничтожно мала (3 · 10–31 г/см3) и звездам просто нечего нагревать. По этой же причине, кстати сказать, Вселенная прозрачна, и мы видим небесные светила. В то же время любая планета, будучи непрозрачной, аккумулирует часть энергии, излучаемой центральным светилом и нагревается. Тогда между нагретой планетой и холодным космосом возникает температурный градиент (ТГ). Если планета обладает достаточно подвижной газообразной и/или жидкой оболочкой (атмосферой и/или гидросферой), то ТГ обязательно порождает в ней (просто за счет конвекции) физико-химический круговорот. В этот круговорот с неизбежностью вовлекается и твердая оболочка планеты (в случае Земли – кора выветривания), в результате чего возникает глобальный геохимический цикл – прообраз биосферы.

Движущей силой геохимических круговоротов является в конечном счете энергия центрального светила в форме ТГ. Поэтому элементарные геохимические циклы (т.е. прообразы экосистем) существуют в условиях периодического падения поступающей в них энергии – в те моменты, когда они в результате вращения планеты оказываются на ее теневой стороне, где ТГ меньше. Эта ситуация неизбежно должна порождать отбор круговоротов на стабильность, т.е. на их способность поддерживать собственную структуру. Наиболее же стабильными окажутся те круговороты, которые «научатся» запасать энергию во время световой фазы цикла, с тем чтобы расходовать ее во время теневой. Другим параметром отбора круговоротов, очевидно, должно быть увеличение скорости оборота вовлеченного в них вещества; здесь выигрывать будут те из них, что обзаведутся наиболее эффективными катализаторами. В конкретных условиях Земли такого рода преимущества будут иметь те круговороты, которые происходят при участии высокомолекулярных соединений углерода.

Итак, жизнь в форме химической активности означенных соединений оказывается стабилизатором и катализатором уже существующих на планете геохимических циклов (включая глобальный); циклы при этом «крутятся» за счет внешнего источника энергии. Вам это ничего не напоминает? Ну конечно, это уже знакомая нам автокаталитическая система, которая, соответственно, обладает потенциальной способностью к саморазвитию и прежде всего к совершенствованию самих катализаторов-интермедиатов. Отсюда становится понятным парадоксальный вывод, к которому независимо друг от друга приходили такие исследователи, как Дж. Бернал (1969) и М. М. Камшилов (1972): жизнь как явление должна предшествовать появлению живых существ. Из такого подхода вполне очевидна принципиальная тщетность попыток синтезировать живое существо «в колбе», как это делали средневековые алхимики или сторонники классического абиогенеза: для такого синтеза как минимум нужна колба размером с планету.