Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

СК-метод развития человека - Кандыба Виктор Михайлович - Страница 36


36
Изменить размер шрифта:

Поэтому мы считаем более правильным рассмотреть другие подходы к оценке и описанию биофизических свойств живых организмов, которые в соединении с гипотезой о биоплазме, возможно, дадут более адекватное представление О биологическом электромагнитном поле.

Эти подходы следующие:

1) живой организм рассматривается нами как целостное квазикристаллическое образование, в котором явления когерентности представляются решающими для проявления взаимодействия внутренних и внешних электромагнитных полей;

2) живой организм представляет собой сложную упорядоченную систему компартментации, где пограничные процессы на мембранах, в частности межфазные явления, играют решающую роль;

3) электрические свойства живого организма обусловлены его своеобразной «био-электретной» природой. Указанные три положения, на наш взгляд, дают возможность ближе подойти к правильному объяснению феноменологии электромагнитного воздействия и репарации с позиций биологического поля (здесь и далее имеются в виду только электромагнитные аспекты биополя) и квантово-механических понятий.

Кратко поясним изложенные три положения. Прежде всего отметим, что биологические объекты наряду с большим числом общих характерных черт (наследственность, раздражимость, обмен веществ и т. д.) с физико-химической точки зрения имеют сходство в том, что их можно условно рассматривать как жидкие кристаллические образования. Имеется достаточно оснований для такого подхода: большое количество воды в клетках и тканях; роль воды в поддержании упорядоченной структуры живого, ее фазовые переходы в квазикристаллическом состоянии, важные для функционирования живого вещества; тиксотропные свойства биологических гелей и клеточных структур, биомембран в особенности, а также подвижность и легкость изменения свойств биологических веществ, и биомембран в частности, под влиянием самых различных физических факторов (магнитные, электрические, температур o ные и т. д.); наличие явлений, аналогичных плавлению жидких кристаллов, например пиноцитоз, и т. д.

Биологические объекты сближают с жидкими кристаллами и другие явления, например: неоднородность биомембран на поверхности, анизотропность свойств, благодаря которой в мембранах протекают процессы разной тензорной размерности (химические реакции и процессы переноса), сопряженность потоков, направляющихся во взаимно перпендикулярных плоскостях, наличие дальнего порядка в структуре биовдембран, полиформизм их структуры при изменении рН, ионной силы раствора, наличие определенного температурного интервала существования. Из сказанного выше видно, что исследователи вправе использовать в качестве ориентировочной приближенной модели жидкокристаллические образования и явления, протекающие в них, для интересующего нас анализа взаимодействия электромагнитного излучения с живым веществом.

В таком случае в живом организме при взаимодействии его жидкого квазикристаллического вещества с внешним электромагнитным полем возможны эффекты, которые связаны с квантовыми состояниями, например интерференцией, где существенны фазовые свойства (свойства когерентности) электронных состояний. Поскольку квантовые состояния рассматриваются как осцилляторы, взаимодействие которых зависит и от фазовых свойств, становится возможной молекулярная миграция энергии за счет связанных между собой осцилляторов, передача информации как передача параметров когерентности, что открывает широкие возможности для изучения и правильного понимания механизмов действия электромагнитного излучения на живые организмы, а также механизмов биоэнерготерапии.

При таком подходе становятся ясными описанные в научной литературе явления модифицирования радиобиологического действия различными физическими агентами: слабым электрическим током, электростатическими полями, магнитными полями – в том числе геомагнитным полем. Эти факторы, по-видимому, могут оказывать влияние путем изменения параметров когерентности, например фазы и амплитуды электронной волновой функции биологических квазикристаллических структур.

В механизмах электромагнитного воздействия на биологические объекты необходимо учитывать явления, происходящие на межфазных границах в силу развитой компартментации и отражающие уже надатомный уровень взаимодействия в биоструктурах. По мнению некоторых исследователей, ограниченность движения электрона, обусловленная малой толщиной слоев мембранных структур и характером их построения, указывает на возможность проявления в них различных квантовых эффектов за счет изменения расположения и количества энергетических уровней дискретного спектра электрона. Авторы работы делают вывод, что тонкие слои в мембранных структурах выполняют функции селективного приемника излучения, повышая чувствительность клеток к резонансному воздействию излучения. Таким образом, и на субклеточном уровне открываются возможности для проявления квантовых эффектов и объяснения их с помощью специфических особенностей биологического действия электромагнитного излучения.

В то же время известно, что на поверхности клеточных структур имеется двойной электрический слой, образованный заряженными химическими группами поверхности и диффузной оболочкой противоионов среды, компенсирующей заряд поверхности. При воздействии электромагнитного излучения на такие системы будут возникать индуктивные электрические токи на границе раздела фаз и разнообразные биологические реакции за счет изменения функций внутриклеточных структур. Но этот механизм близок к известным классическим описаниям действия радиации, в то время как нас интересуют новые подходы в этой области.

В настоящее время уже предложена такая новая модель взаимодействия мембраны (нервных) клеток с внешним электромагнитным излучением. Автор ее справедливо подчеркивает, что существующие экспериментальные данные указывают на прямое взаимодействие между внешним электромагнитным полем и внутренними глубоколежащими структурами на основе частотно-резонансного способа действия, и выводит даже эффективный гамильтониан для таких структур. Но автор цитируемой работы совершенно забывает, что такое взаимодействие требует необычного механизма связи, а именно биополевого взаимодействия на основе квантовых процессов, и поэтому предлагаемые им исследования сечения поглощения как функции частоты для разных биологических тканей не помогут вскрыть существа дела. В целом указанная работа весьма прогрессивная, хотя в ней нет анализа самого основного вопроса – о происхождении электрического поля мембран и тесно связанного с этим вопроса об электрическом поле живого организма в целом.

Наиболее правильной, на наш взгляд, является точка зрения о «биоэлектретном» происхождении электрического поля живых организмов. Как известно, электретом называется электронейтральное тело, обладающее объемной электрической поляризацией и обусловленным ею внешним электрическим полем. Исследования показали, что вблизи человека (и других живых организмов) регистрируются квазистатические электрические поля в несколько десятков вольтметр, не связанные с трибоэлектрическими зарядами. Подобно обычным электретам, эти поля существуют постоянно, восстанавливают свою исходную величину после испарения экранирующей водной пленки. Их основой, по-видимому, является непрерывная поляризация и деполяризация связанных зарядов живой ткани за счет конформационных изменений на молекулярном уровне.

Следует заметить, что в живых организмах выполняется и другое важное свойство, характеризующее обычные электреты: отставание деполяризации и реполяризации свободных зарядов от деполяризации и реполяризации связанных зарядов. Это происходит за счет того, что, несмотря на высокую электропроводность живых тканей (до 10~7 ом*1 см*1), изменение состояния части связанных зарядов в живом организме происходит быстрее, чем свободных зарядов, приводя к после-дующей деполяризации свободных зарядов и образованию внешнего электрического поля. По нашему мнению, основой этого является возможность быстрого протонного туннелиро-вания, наличие тс-электронных систем с обобщенными орбитами, по которым движение заряженных частиц может происходить гораздо быстрее, чем передвижение свободных зарядов в условиях сильной компартментации в клетках.