Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Взрывающиеся солнца. Тайны сверхновых - Азимов Айзек - Страница 31
Но вернемся к Солнцу, масса которого в 500 раз больше массы всех планетных тел, вместе взятых, — от Юпитера до крошечной пылинки; мы обнаружим (главным образом благодаря спектроскопии), что его объем заполняет все тот же водород с гелием. Фактически примерно 75 % его массы падает на водород, 22 %—на гелий, а 3 % — это все остальные элементы, вместе взятые. Количественный состав атомов Солнца окажется таким, что на каждую 1000 атомов Солнца приходится 920 атомов водорода и 80 атомов гелия. Менее одного атома из тысячи представляют все остальные элементы.
Бесспорно, Солнце обладает львиной долей массы всей Солнечной системы, и мы не очень ошибемся, решив, что его элементарный состав представителен для всей системы в целом. Подавляющее большинство звезд по своему элементарному составу напоминает Солнце. Кроме того, известно, что разреженные газы, заполняющие межзвездное и межгалактическое пространство, тоже в основном водород и гелий.
Поэтому можно заключить, что из 1000 атомов всей Вселенной 920 — водород, 80 — гелий и менее одного — все прочее.
ВОДОРОД И ГЕЛИЙ
Почему так? Увязывается ли водородно-гелиевая Вселенная с Большим взрывом? Очевидно, да. По крайней мере в том, что касается системы рассуждений Гамова, системы улучшенной, но в основе оставшейся без изменений.
Вот как это работает. Очень скоро после Большого взрыва, через какую-то долю секунды, расширяющаяся Вселенная остыла до такой точки, когда образовались известные нам составляющие атомов: протоны, нейтроны и электроны. В условиях огромной температуры, которая еще царила в то время, ничего более сложного существовать не могло. Частицы не могли соединиться друг с другом: при такой температуре, даже сталкиваясь, они тут же отскакивали в разные стороны.
Это остается справедливым и при столкновениях протон — протон или нейтрон — нейтрон даже при гораздо меньших температурах, таких, как температура нынешней Вселенной. Однако по мере того как температура ранних этапов эволюции Вселенной продолжала падать, наступил момент, когда при столкновениях протон — нейтрон появилась возможность двум частицам удержаться вместе. Они удерживаются вместе так называемым сильным взаимодействием — сильнейшим из четырех известных взаимодействий.
Протон-1 — это ядро водорода, как было сказано ранее в этой главе. Но комбинация протон — нейтрон — это тоже ядро водорода, потому что она имеет один протон, а это все, что требуется, чтобы квалифицировать ядро как водородное. Эти две разновидности ядер водорода (протон и протон — нейтрон) называются изотопами водорода и определяются в зависимости от общего числа частиц, которые они включают. Протон, в котором есть только одна частица, — это ядро водород-1. Комбинация протон — нейтрон, которая включает всего две частицы, — это ядро водород-2.
При высоких температурах ранней Вселенной, когда формировались различные ядра, ядро водорода-2 было не очень устойчиво. Оно стремилось либо к распаду на отдельные протоны и нейтроны, либо к соединению с дополнительными частицами, с последующим образованием более сложных (но, возможно, более стабильных) ядер. Ядро водорода-2 может столкнуться с протоном и примкнуть к нему, образуя ядро, составленное двумя протонами и одним нейтроном. В этой комбинации два протона, и мы получим ядро гелия, а так как в ядре три частицы, то это гелий-3.
Если водород-2 сталкивается и смыкается с нейтроном, образуется ядро, состоящее из одного протона и двух нейтронов (снова вместе три частицы). В результате получается водород-3.
Водород-3 неустойчив ни при какой температуре, даже при невысокой температуре современной Вселенной, поэтому он претерпевает вечные изменения, даже если он свободен от влияния других частиц или столкновений с ними. Один из двух нейтронов в ядре водорода-3 рано или поздно превращается в протон, и водород-3 становится гелием-3. В теперешних условиях это изменение не слишком быстро: половина ядер водорода-3 обращается в гелий-3 в течение немногим более двенадцати лет. При огромных температурах ранней Вселенной это изменение, несомненно, было более быстрым.
Итак, у нас теперь три типа ядер, устойчивых в современных условиях: водород-1, водород-2 и гелий-3.
Частицы гелия-3 соединяются друг с другом еще слабее, чем частицы водорода-2, и особенно при повышенных температурах ранней Вселенной, у гелия-3 сильная тенденция к распаду или изменениям путем дальнейшего добавления частиц.
Если бы гелию-3 случилось натолкнуться на протон и ему пришлось бы к нему присоединиться, тогда мы имели бы ядро, состоящее из трех протонов и нейтрона. Это был бы литий-4, нестабильный при любой температуре, так как даже в условиях прохладной температуры земной поверхности один из его протонов быстро превращается в нейтрон. В результате получается комбинация два протона — два нейтрона, или гелий-4.
Гелий-4 — очень устойчивое ядро, самое устойчивое при обычных температурах, за исключением единственного протона, образующего водород-1. Однажды сложившись, он почти не имеет тенденции к распаду, даже при очень высоких температурах.
Если гелий-3 сталкивается и соединяется с нейтроном, тут же образуется гелий-4. Если сталкиваются и соединяются два ядра водорода-2, опять же образуется гелий-4. Если гелий-3 сталкивается с водородом-2 или с другим гелием-3, образуется гелий-4, а избыточные частицы отсеиваются как отдельные протоны и нейтроны. Таким образом, гелий-4 образуется за счет водорода-2 и гелия-3.
В сущности, когда Вселенная остыла до температуры, при которой протоны и нейтроны, соединяясь, могли строить более сложные ядра, то первым таким ядром, образовавшимся в большом количестве, был именно гелий-4.
По мере дальнейшего расширения и охлаждения Вселенной водород-2 и гелий-3 все меньше стремились к изменению, а некоторые из них были, так сказать, заморожены для неизменяемого существования. В настоящее время только один атом водорода из каждых 7000 — водород-2; гелий-3 еще реже — только один атом гелия на миллион. Значит, не принимая в расчет водород-2 и гелий-3, мы можем сказать, что вскоре после того, как Вселенная достаточно остыла, ее составляли ядра водорода-1 и гелия-4. Таким образом, масса Вселенной слагалась из 75 % водорода-1 и 25 % гелия-4.
С течением времени в местах, где температура была достаточно низкой, ядра притягивали отрицательно заряженные электроны, которые удерживались при положительно заряженных ядрах силой электромагнитного взаимодействия — вторым сильнейшим из четырех взаимодействий. Единственный протон ядра водорода-1 ассоциировал с одним электроном, а два протона ядра гелия-4 соединялись с двумя электронами. Так формировались атомы водорода и гелия. Выражаясь количественно, на каждую 1000 атомов во Вселенной приходится 920 атомов водорода-1 и 80 атомов гелия-4.
В этом и есть объяснение водородно-гелиевой Вселенной. Но минуточку! Как обстоит дело с атомами тяжелее, чем гелий, и с более высоким атомным весом? (Соберем все атомы, содержащие более четырех частиц в ядрах, под знаком «тяжелые атомы»). Во Вселенной очень мало тяжелых атомов, тем не менее они существуют. Как они появились? Логика подсказывает, что, хотя гелий-4 очень устойчив, все же в нем есть слабая тенденция соединяться с протоном, нейтроном, водородом-2, гелием-3 или с другим гелием-4, образуя небольшие количества различных тяжелых атомов; это и есть источник возникновения примерно 3 % массы сегодняшней Вселенной, состоящей из этих атомов.
К сожалению, такой ответ проверки не выдержит. Если гелий-4 столкнулся бы с водородом-1 (один протон) и они соединились, появилось бы ядро с тремя протонами и двумя нейтронами. Это был бы литий-5. Если гелий-4 столкнулся бы и соединился с нейтроном, в результате появилось бы ядро с двумя протонами и тремя нейтронами, или гелий-5.
Ни литий-5, ни гелий-5, даже сформировавшись в условиях нашей остывшей Вселенной, не просуществуют больше нескольких триллионных долей триллионной доли секунды. Именно за такой период времени они распадутся либо в гелий-4, либо в протон или нейтрон.
- Предыдущая
- 31/52
- Следующая