Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Инфодинамика, Обобщённая энтропия и негэнтропия - Лийв Э Х - Страница 23
5. Предполагается, что в системах протекают только марковские случайные процессы, т.е. кроме условий в п. 3 и 4, вероятность исхода (Вi) последущего события зависит только от исходов (Аj) предыдущего события и не зависит от исходов других событий, которые предшествуют последнему. Часто события зависят не только от непосредственно пре-дыдущего, но и от тех, которые имели место ранее. Для ослабления влияния этого ограничения, в качестве сложного предшествующего события рассматривают последовательность ряда предшествующих простых событий. С увеличением дли-ны цепи их влияние на вероятность появления целевого собы-тия быстро убывает. В таких процессах, обнаруживающих свойства эргодичности, связь между событиями, отстоящими достаточно далеко друг от друга, можно рассматривать, как исчезающую.
6. Предполагается, что статистика распределения слу-чайных величин известна. За вероятностную оценку пара-метров принимается их нормальное распределение и соб-людение принципа максимального правдоподобия. Реально далеко не всегда известно вид распределения. В большинстве случаев можно принимать нормальное распределение, часто встречается и экспоненциальное распределение (при опреде-лении надёжности, срока службы) или биномиальное рас-предение.
7. Предположительно цель сформулирована конкретно и однозначно. Также считается, что установлены способ измерения степени достижения цели, т.е. вероятность, кото-рой она должна быть достигнута и соответствующие крите-рии. Практически системы имеют часто несколько критериев цели. Системы могут иметь по разным критериям противо-положные показатели по выполнению цели. В таких случаях необходимо сравнивать показатели при помощи функции желательности или по экономическим критериям и найти компромиссное решение.
8. Системы, принимающие информацию, должны быть чётко ограничены и охарактеризованы. Ясно должны быть определены пределы системы в пространстве и во времени, а также пределы и количество элементов и влияние на них окружающей среды. На практике эти пределы и цели часто являются весьма расплывчатыми, границы между элементами туманными. Неопределённостями от отклонений пределов, границ и ограничений тоже необходимо учитывать в расчё-тах ОЭ.
9. Передача информации по каналам предположительно происходит в идеальных условиях. В действительности в ка-налах связи могут возникать искажения или вообще из-менения по существу информации. Шумы в каналах передачи информации, как во внешних, так и во внутренних связях, существенно влияют на ОЭ системы.
10. Структуры и функции системы в определённый период считаются неизменяющимися во времени. Реально существующие системы и их элементы могут изменяться крайне медленно или в разных скоростях и направлениях. Фактор времени должен быть специально учтён при расчётах ОЭ. Кроме того, большое влияние имеет своевременное получение системой информации.
11. Технология и организационная структура в системах работают по регламенту или по уставу. В реальных системах, особенно, если в них участвуют люди, наблюдается много отклонений (например, технические неисправности, непра-вильное распределение обязанностей между людьми). Между людьми могут возникать разного рода конфликты, недо-разумения, обиды, передачи неверной информации. Все эти факторы должны быть учтены при рассчётах коэффициента рассеяния информации.
12. Пространство состояния модели должно обеспечить эффективное изучение поведения реальной динамической сис-темы. Фазовое пространство модели должно содержать мини-мальное количество координат измерения (порядок системы), необходимого для однозначного описания превращений сис-темы. Если в модели системы фазовых координат (порядка) меньше требуемого, то это может вообще сделать невоз-можным однозначное описание процессов превращений сис-темы (фазового портрета). Отсутствие требуемой размерности в модели существенно уменшает её ОНГ, гомоморфность и возможность её использования.
Этап IV. Введение необходимых поправок и уточнений в условные вероятности и в коэффициенты увеличения ОЭ (К и k). Принципы определения k приведены раньше (гл. 4 и 12). Колебания Zи находятся в пределах 0 ё 1,0. Колебания K, k - в пределах 1 ё ?.
1. Для выяснения интеракции действия факторов необ-ходимо найти условные вероятности при воздействии от-дельно одного и другого фактора и при их одновременном воздействии. Если разности между одновременном и суммой раздельно проведенных действий нет, то можно рассмат-ривать их воздействие отдельно. Если есть отличия в пока-зателях, то необходимо ввести поправки на совместное влияние факторов.
2. Так как вероятностные отклонения существуют во всех системах, то в ряде случаев могут быть найдены только приближённо функциональные зависимости между вели-чинами факторов и статистическими параметрами критерия цели. Если такие зависимости обнаруживаются, то веро-ятность достижения цели можно уточнять методами функ-ционального анализа.
3. Часто на практике необходимо создавать модель реальной системы, о которой известно ряд отрывистых фак-тов или экспериментальных данных. Однако, их недостаточно для определения статистических параметров функциони-рования системы. Кроме того, о системе имеются пре-рывистые априорные данные, например, по аналогии с дру-гими системами, по действию законов природы или эко-номики, мнение экспертов и др. Задача заключается в приме-нении полученных новых априорных (теоретических) и апостериорных (экспериментальных) данных для уточнения статистических моделей данной системы. Для решения задачи могут быть применены метод экспертных систем и метод Байеса. Этими вопросами занимается теория статистических решений (статистические игры). В общем случае существует некоторое множество возможных состояний системы, которое образует пространство выбора оптимальных вариантов. Из прошлого опыта или из теоретических предположений можно ориентировочно прогнозировать, как часто система принимает то или иное состояние, т.е. бывает известно априорное рас-пределение вероятностей. ОНГ модели системы может быть существенно увеличена путём проведения экспериментальных работ. В принципе экспериментальным путём можно полу-чить достаточно полную информацию о состоянии системы и составить достоверную, гомоморфную модель. Однако, пос-тановка эксперимента всегда связана с затратой средств и времени, потери от которых могут оказаться значительнее того выигрыша, который могут дать результаты экс-перимента.
4. Особого внимания требует выяснение конфликтных ситуаций внутри системы, а также между системой и на-ружной средой. В случае конфликта возникают элементы с противоположными интересами, когда выигрыш одного свя-зано с проигрышом другого. Однако, далеко не всегда конфликт кончается с общим нулевым результатом (т.е. выигрывает сильный и в такой же мере проигрывает другой). Обычно интересы конфликтующих сторон не совпадают с общими интересами системы. Для расчётов влияния конф-ликтов на целевые критерии и их вероятности применяются методы теории игр, для усовершенствования которых не-обходимо учесть также изменение ОНГ.
5. В будущем широкие возможности для уточнения вероятностей открывает метод экспертных систем. Исходя из метода "чёрного ящика" можно в модель ввести много нефор-мализованной информации и уточнять статистические пара-метры. В большинстве случаев знания закодированы в виде серии экспериментально обоснованных эвристических правил, эвристик. Такие правила сужают поле поиска решений, помо-гают находить наиболее вероятные пути достижения цели.
Этап V. Многие системы построены так, что допус-кают для решения поставленных целей сравнение или сопос-тавление многих альтернативных вариантов структуры или путей проведения операций. В таких случаях необходимо более широкое применение методов системного анализа, выяс-нение экономической или другой эффективности, доходов и затрат при осуществлении всех вариантов. Такой анализ требуется, например, во всех работах проектирования техно-логии или прогнозирования развития систем.
- Предыдущая
- 23/53
- Следующая
