Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Новая наука о жизни - Шелдрейк Руперт - Страница 26
Теперь сделаем попытку повторить Р- и Q-кристаллизации с теми же видами семян, которые использовались вначале. Кристаллизация проводится также в отсутствие каких-либо семян. Если во всех этих случаях получаются кристаллы R-типа, это серьезное свидетельство в пользу гипотезы формативной причинности. А если такой эксперимент может быть повторен со многими другими вновь синтезированными веществами, значит, есть действительно весомое основание для этой гипотезы.
Однако, если изначально в партиях Р, R и Q получились бы кристаллы только одного типа, результат был бы неоднозначным. С одной стороны, если в одном из растворов кристаллизация началась несколько раньше, чем в других, влияние этих первых кристаллов через морфический резонанс может быть достаточно сильным, чтобы вызвать кристаллизацию того же типа в других растворах. С другой стороны, такой результат согласовался бы с распространенным предположением, что получается структура одного типа, поскольку она одна соответствует минимуму энергии. Тем не менее даже с кристаллом одного типа все же должно быть возможно обнаружить уменьшение времени, необходимого для кристаллизации вещества при стандартных условиях, по мере того как увеличивается число прошлых кристаллов этого типа, вносящих вклад в морфогенетическое поле путем морфического резонанса.
Эксперименты с кристаллами есть только один из способов проверки гипотезы формативной причинности. Примеры возможных экспериментов с биологическими системами обсуждаются в разделах 7.4, 7.6 и 11.4.
Глава 6. Формативная причинность и морфогенез
6.1. Последовательный морфогенез
После того как субатомные частицы агрегировали в атомы, последние могут объединяться в молекулы, а молекулы — в кристаллы. Кристаллы сохраняют свою форму сколь угодно долго, пока температура остается ниже их точки плавления. Напротив, морфогенетические процессы в живых организмах продолжаются неопределенно долго, в бесконечно повторяющихся циклах роста и воспроизведения.
Простейшие живые организмы состоят из единственной клетки, за ростом которой следует деление, а за делением рост. Таким образом, морфогенетические зародыши хреод деления должны появляться в конечной форме полностью сформировавшихся клеток, а только что разделившиеся клетки служат отправными точками для хреод клеточного роста и развития. В многоклеточных организмах эти циклы продолжаются лишь в некоторых клетках, например в клеточных линиях зародышей, «стволовых» клетках[138] и клетках меристемы. Другие клетки и фактически целые ткани и органы развиваются в различные специализированные структуры, которые в дальнейшем претерпевают незначительные морфогенетические изменения: они перестают расти, хотя могут сохранять способность к регенерации после повреждения, и рано или поздно они умирают. На самом деле возможно, что они смертны именно потому, что они перестают расти.[139]
Развитие многоклеточных организмов происходит через серии стадий, контролируемых последовательностью морфогенетических полей. Сначала развиваются эмбриональные ткани под контролем первичных эмбриональных полей. Затем рано (в «мозаичном» развитии) или поздно (в «регуляторном» развитии) различные области подпадают под влияние вторичных полей: у животных — полей конечностей, глаз, ушей и так далее; у растений — полей листьев, лепестков, тычинок и так далее. Вообще говоря, морфогенезис, вызванный первичными полями, внешне не впечатляет, но имеет фундаментальное значение, поскольку устанавливает характерные различия между клетками в разных участках организма, и эти различия (согласно настоящей гипотезе) позволяют им играть роль морфогенетических зародышей полей органов. Затем в тканях, развивающихся под их влиянием, появляются зародыши вспомогательных полей, которые контролируют морфогенез структур в пределах органа как целого: в листе — пластинок, прилистников, черенков и т. д.; в глазу — роговицы, радужной оболочки, хрусталика и т. д. А затем выступают на сцену морфогенетические поля еще более низких уровней, например контролирующие дифференциацию сосудов в пластинках листа или дифференциацию слизистой оболочки рта и клеток волосков на ее поверхности.
Эти поля могут быть и были исследованы экспериментально при изучении способности развивающихся организмов к регуляции после повреждения различных участков эмбриональной ткани и после прививки ткани, взятой из одного участка, на другой участок организма эмбриона. Как в эмбрионах животных, так и в меристемных зонах растений по мере развития тканей автономия различных участков возрастает; система в целом теряет способность к регуляции, но местная регуляция осуществляется в развивающихся органах, когда первичные эмбриональные поля заменяются более многочисленными вторичными полями.[140]
6.2. Полярность морфогенетических полей[141]
Большинство биологических морфических единиц поляризовано по крайней мере в одном направлении. Их морфогенетические поля, содержащие поляризованные виртуальные формы, будут автоматически принимать подходящие ориентации, если их морфогенетические зародыши также внутренне поляризованы, но если нет — полярность должна быть наложена на них. Например, сферические яйцеклетки водоросли Fucus не имеют врожденной полярности, и их развитие может начаться только после того, как они поляризованы каким-либо из разнообразных направленных стимулов — светом, градиентом концентрации веществ или электрическими токами; в отсутствие какого-либо из таких стимулов полярность принимается наугад, предположительно благодаря спонтанным флуктуациям.
Почти все многоклеточные организмы поляризованы в направлении стебель — корень или голова — хвост, многие, кроме того, поляризованы и во втором направлении — вентрально-дорсальном,[142] а некоторые — в трех направлениях: голова — хвост, вентрально-дорсальное и левое — правое. Последняя группа является асимметричной и потенциально способна существовать в формах, которые являются зеркальными отражениями друг друга, например улитки со спиральными раковинами. А в организмах с билатеральной симметрией[143] асимметричные структуры, которые возникают на обеих сторонах, обязательно образуются как в правой, так и в левой форме, например руки правая и левая.
Эти зеркальные формы имеют одинаковую морфологию и предположительно развиваются под влиянием одного и того же морфогенетического поля. Поле просто принимает конфигурацию (правую или левую) того морфогенетического зародыша, с которым оно связывается. Так, правые и левые предшествующие системы влияют на правые и левые последующие системы через морфический резонанс.
Такая интерпретация подтверждается некоторыми фактами, хорошо известными в биохимии. Молекулы аминокислот и сахаров являются асимметричными и могут существовать как в правой, так и в левой формах. Однако в живых организмах все аминокислоты в белках являются левосторонними, тогда как большая часть сахаров — правосторонними. Сохранение таких асимметрий возможно благодаря асимметричным структурам ферментов, которые катализируют синтез молекул. В природе большинство аминокислот и сахаров редко или вообще не встречаются вне живых организмов. Поэтому эти индивидуальные асимметричные формы должны вносить преобладающий вклад в морфогенетические поля молекул путем морфического резонанса. Но когда они синтезируются в искусственных условиях, получаются равные количества правосторонних и левосторонних форм; это показывает, что такая «сторонность» формы не является внутренним свойством морфогенетических полей.
- Предыдущая
- 26/67
- Следующая