Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Новая наука о жизни - Шелдрейк Руперт - Страница 18


18
Изменить размер шрифта:

Рис. 10. Альтернативные варианты представления простой иерархической системы

Морфическая единица высшего уровня должна как-то координировать организацию частей, из которых она состоит. Мы будем предполагать, что она делает это посредством влияния своего морфогенетического поля на морфогенетические поля морфических единиц низших уровней. Таким образом, морфогенетические поля, подобно самим морфическим единицам, имеют строго иерархическую организацию.

Способ, которым морфогенетические поля могут действовать на системы, находящиеся под их влиянием, обсуждается в следующей главе, а вопросы о том, откуда берутся они сами и что сообщает им их специфическую структуру, рассматриваются в главе 5.

Глава 4. Морфогенетические поля

4.1. Морфогенетические зародыши

Морфогенез не происходит в вакууме. Он может начаться только с уже организованной системы, которая служит морфогенетическим зародышем. В процессе морфогенеза новая морфическая единица более высокого уровня возникает вокруг этого зародыша под влиянием специфического морфогенетического поля. Так как же это поле соединяется с морфогенетическим зародышем, чтобы началось развитие?

Ответ может состоять в том, что как соединение материальных систем с гравитационными полями зависит от их массы, а с электромагнитными полями — от их электрического заряда, так и соединение систем с морфогенетическими полями зависит от их формы. Таким образом, морфогенетический зародыш окружается морфогенетическим полем благодаря тому, что он имеет свою характерную форму.

Рис. 11. Диаграмма, представляющая развитие системы из морфогенетического зародыша (треугольник) по нормальной хреоде (А). Показаны также альтернативный морфогенетический путь развития (В), регуляция (С) и регенерация (D). Затененные области представляют виртуальные формы внутри морфогенетического поля

Морфогенетический зародыш является частью системы, которая должна возникнуть. Поэтому часть морфогенетического поля системы соответствует этому зародышу. Однако остальная часть поля еще не занята или не заполнена; она содержит виртуальную форму законченной системы, которая становится реальной (актуальной) только тогда, когда все ее материальные части занимают соответствующие им места. Тогда морфогенетическое поле совпадает с актуальной формой системы.

Эти процессы представлены в виде диаграммы на рис. 11. Затененные области обозначают виртуальную форму, а сплошные линии — реальную форму системы. Морфогенетическое поле можно представить себе как структуру, окружающую или включающую в себя морфогенетический зародыш и содержащую виртуальную конечную форму; затем это поле в диапазоне своего действия организует события таким образом, что виртуальная форма актуализируется, то есть переходит в реальную. В отсутствие морфических единиц, которые составляют части конечной системы, это поле обнаружить невозможно; оно проявляет себя только через свое организующее действие на эти части, когда они попадают в область его влияния. Грубой аналогией могут служить «силовые линии» магнитного поля вокруг магнита; эти пространственные структуры проявляют себя, когда частицы, способные намагничиваться, такие как железные опилки, оказываются вблизи магнита. Тем не менее магнитное поле можно считать существующим и тогда, когда железные опилки отсутствуют; подобно этому, морфогенетическое поле вокруг морфогенетического зародыша существует как пространственная структура, даже несмотря на то, что она еще не была актуализирована в конечной форме системы. Однако морфогенетические поля радикальным образом отличаются от электромагнитных полей в том, что последние зависят от фактического (актуального) состояния системы — от распределения и движения заряженных частиц, — тогда как морфогенетические поля соответствуют потенциальному состоянию развивающейся системы и уже присутствуют раньше, чем система принимает свою конечную форму.[105]

На рис. 11 показано несколько промежуточных состояний между морфогенетическим зародышем и конечной формой. Последняя может быть достигнута также различными путями {рис. 11 В), но если обычно выбирается один определенный путь, его можно рассматривать как «канализированный путь изменения», или хреоду (рис. 5).

Если развивающаяся система повреждена путем удаления ее части, она все же может достичь конечной формы (рис. 11 С). Это представляет регуляцию.

После актуализации конечной формы продолжающаяся связь между морфогенетическим полем и системой, форма которой ему соответствует, будет стремиться стабилизировать эту систему. Любые отклонения системы от этой формы будут корректироваться, так как система стремится вернуться к этой форме. А если часть системы удалить, конечная форма будет стремиться снова актуализироваться (рис. 11 D). Это представляет регенерацию.

Тип морфогенеза, показанный на рис. 11, существенно агрегативный: ранее существовавшие отдельно морфические единицы объединяются в морфическую единицу более высокого уровня. Возможен другой тип морфогенеза, когда морфическая единица, которая служит морфогенетическим зародышем, уже является частью другой морфической единицы более высокого уровня. Влияние нового морфогенетического поля приводит к трансформации, в которой форма первоначальной морфической единицы более высокого уровня заменяется формой новой морфической единицы. Большинство видов химического морфогенеза относится к агрегативному типу, тогда как биологический морфогенез предполагает обычно комбинацию трансформативного и агрегативного процессов. Примеры мы рассматриваем в следующих разделах.

4.2. Химический морфогенез

Агрегативные морфогенезы с нарастающей интенсивностью осуществляются в неорганических системах при понижении температуры: когда плазма охлаждается, субатомные частицы агрегируют в атомы; при более низкой температуре атомы агрегируют в молекулы; затем молекулы конденсируются в жидкости; и наконец, жидкости кристаллизуются.

В состоянии плазмы обнаженные атомные ядра можно рассматривать как морфогенетические зародыши атомов; они связаны с атомными морфогенетическими полями, которые содержат виртуальные орбитали электронов. В одном смысле эти орбитали не существуют, но в другом — они обладают реальностью, которая выявляется в остывающей плазме, когда они актуализируются путем захвата электронов.

Электроны, которые были захвачены атомными орбиталями, могут быть смещены оттуда воздействием внешней энергии или путем введения виртуальной орбитали с более низкой потенциальной энергией. В последнем случае они теряют дискретный квант энергии, который излучается как фотон. В атомах со многими электронами каждая орбиталь может содержать только два электрона (с противоположными спинами); таким образом, в остывающей плазме электронами заполняются сначала виртуальные орбитали с наиболее низкой энергией, затем орбитали с ближайшими к ним низшими энергиями и так далее, до тех пор пока не реализуется (актуализируется) полная атомная форма вокруг морфогенетического зародыша ядра.

Атомы, в свою очередь, являются морфогенетическими зародышами молекул, а малые молекулы — зародышами больших молекул. Химические реакции включают либо агрегацию атомов и молекул в большие молекулы — например, образование полимеров, — либо расщепление больших молекул на меньшие или на атомы и ионы, которые затем могут агрегировать с другими атомами или ионами, например в процессе горения: под действием внешней энергии молекулы распадаются на атомы и ионы, которые затем соединяются с кислородом с образованием малых, простых молекул, таких как Н2О и СО2. Эти химические изменения включают актуализацию виртуальных форм, связанных с атомами или молекулами, которые действуют как морфогенетические зародыши.