Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Приложения к трактату «Основы физики духа» - Скляров Андрей Юрьевич - Страница 11
Сложилась довольно парадоксальная картина. С одной стороны, мир математики представлялся сугубо субъективным «продуктом»; с другой - математические объекты и образы продолжали демонстрировать свою явную подчиненность вполне определенным правилам и закономерностям.
Любопытно, что ньютоно-картезианская парадигма полностью обходила вниманием данный факт… Она была явно бессильна его объяснить: еще бы, ведь речь шла о явно нематериальных объектах…
До недавнего времени казалось, что математика окончательно оторвалась от других наук, но…
«В семидесятые годы ХХ века Мандельброт выпустил книгу, где собрал богатый материал, убедительно вводивший в практический оборот многие из казавшихся безнадежно «абстрактными», «заумными», «патологическими» математических конструктов. И канторовы дисконтинуумы, и покрывающая всю плоскость кривая Пеано, и ковры-кривые Коха и Серьпиньского выглядят теперь как обнаруженные в реальности «главы» из «геометрии природы»; они помогли понять лунный пейзаж, скопления галактик и многое другое столь же невыдуманное, а глазам предлежащее» (Р.Пименов, «Дифференциальные уравнения - насколько они оправданы»).
«Блудная дочь» вернулась в реальный мир…
«Даже дробная размерность (ну кому может присниться число измерений пространства, равное не целому числу! А математики «загодя» и такое ввели) по Хаусдорфу и Безиковичу - и та эмпирически сгодилась для измерения столь важного земного объекта, как длина береговой линии побережья, изрезанного бухточками и подверженного приливам и отливам. Вопреки интуитивному убеждению, будто кривая линия всегда имеет размерность единица, линия британского побережья точнее вычисляется, если приписать ей размерность полтора. Нигде не дифференцируемая кривая Вейерштрасса пригодилась для описания броунова движения и качки корабля, т.е. его остойчивости. И, наконец триумфально вошли и научный оборот так называемые «странные аттракторы». Этот термин относится к полуэмпирически составленным метеорологическим уравнениям для течения неоднородно нагретого неоднородного газа, которые при их численном решении на компьютерах вдруг стали выдавать такие рисунки для распределения как бы притягивающихся один к другому слоев («аттракторы»), которые выглядели в точности как построение канторова дисконтинуума - заумнейшей модели, которая одно время и математикам-то казалась ненужной» (там же).
Заметим, что в действительности это - уже второе «возвращение» математики к реальности. Первое произошло тогда, когда казавшаяся полной абстракцией геометрия Римана и Лобачевского нашла свое применение в теории Эйнштейна… Оба эти «возвращения» объединяет тот примечательный факт, что ранее абстрактные объекты, плоды человеческого сознания и математических закономерностей, стали обнаруживаться как присутствующие в природе и перестали нести функцию чисто умозрительных конструкций.
Уже сам данный факт, пусть и косвенно, свидетельствует о глубинной взаимосвязи даже столь специфических объектов духовно-нематериального мира с миром материальным!.. Но еще более любопытны некоторые детали «возвращения»…
Рассмотрим, например, фрактали, т.е. дробные размерности… В случае с береговой линией мы имеем дело с пересечением двух двумерных поверхностей сложной формы: поверхности воды и земной поверхности. Казалось бы, результатом их «взаимодействия» должна быть одномерная линия, но, как указывалось выше, гораздо лучший результат дает размерность полтора. Здесь мы опять сталкиваемся с фактом того, что важно не ЧТО взаимодействует, а КАК (см. тенденции физики)!..
Но есть еще более «экзотичные штучки»…
«Кантором построена функция (которая называется то «чертовой лестницей», то «канторовой лестницей»…) с такими странными свойствами: она непрерывна на интервале, она почти везде на интервале имеет производную, всюду в точках существования производной производная равна нулю, но функция эта не постоянная, а монотонно возрастает на данном интервале, так что на концах любого интервала ее значения различны. Итак, из df = 0 не следует f = const. Значит, материальная точка в ньютоновой механике могла бы двигаться по такому закону: всюду, где она имеет мгновенную скорость, эта скорость равна нулю. Частица эта обладает мгновенной скоростью почти везде; это означает, что вероятность того, что в данный момент времени она имеет мгновенную скорость, - всегда равна единице. И тем не менее частица не покоится на месте, но перемещается. Неуклонно в одном и том же направлении, поступательно, по прямой. Разумеется, это возможно исключительно за счет недифференцируемости траектории, хотя бы и на множестве меры нуль. Отметим еще, что и структура пространства-времени весьма существенна: такое возможно лишь при существовании сколь угодно быстрого перемещения (впрочем, не бесконечно быстрого); в условиях же ограниченности скоростей скоростью света изложенный парадокс невозможен. Но вот другое применение той же чертовой лестницы допустимо и к ньютоновой и к релятивистской механике. Возможно, что у материальной точки всегда d2x/dt2 = 0 там, где d2x/dt2 = 0 существует, а d2x/dt2 = 0 существует почти везде (т.е. существует с вероятностью единица). При этом dx(0)/dt = 0, x(0) = 0, но движение этой точечной массы происходит не по известным инерциальным законам x(t) = 0, но с переменной скоростью, с переменными импульсами. А ведь уравнение d2x/dt2 = 0 вроде бы «ручается» за отсутствие внешних сил!» (там же).
Итак, физика только-только подбирается к существованию взаимодействий со скоростями, превышающими скорость света, а в математике уже готов соответствующий этому явлению объект!!!
Но и этим дело не ограничивается!.. Как упоминалось ранее, вопрос о наличии взаимодействия со скоростью, превышающей скорость света, в физических теориях связан с положением о непрерывном взаимодействии всех частиц во Вселенной. Сравните это со следующей цитатой:
«…эту самую чертову лестницу пришлось использовать не для описания вышеуказанной гипотетической частицы (т.е. контрпримера в определенных теоретических рассуждениях), а для изображения резонанса бесконечно многих источников, когда вычисления велись на компьютерах. Только она дала согласованное с эмпирикой решение для очень большого числа источников» (там же).
Не правда ли, поразительное совпадение?!.
Заметим, что все вышеприведенное целиком и полностью соответствует положениям новой научной парадигмы и Единой Физике Духа и Материи, выстраиваемой на основе этой парадигмы.
Можно привести и еще один пример данного соответствия… Ранее мы уже упоминали об ошибочном использовании синергетикой дифференциальных уравнений для описания вероятностных процессов, поскольку дифференциальные уравнения соответствуют лишь детерминистическим процессам, коими вероятностные не являются. Перечисленная математическая «экзотика» как раз и относится к тем самым случаям, когда дифференциальные методы не работают. Но оказывается, что при этом работают интегральные методы.
«Ну, в утешение. Хотя при включении в рассмотрение непрерывных не-гладких структур парадигма дифференциальных уравнений ломается, все же сохраняется неизменной парадигма интегральных уравнений, поскольку особенности на множестве меры нуль (особенности с нулевой вероятностью их проявления) погашаются при интегрировании» (там же).
То есть работоспособными оказываются методы, основанные на обратной к дифференцированию операции…
Однако, что такое «интегрирование» с точки зрения физики, и где оно применимо?.. Оно используется не при прогнозировании развития событий, а при анализе прошедших событий!.. И здесь вполне уместно вспомнить об одном из базовых положений Единой Физики Духа и Материи: однозначность и неизменность прошлого сочетается с вероятностным характером будущего. Как легко видеть, вышеприведенная математическая «экзотика» опять-таки полностью соответствует этому принципу!..
- Предыдущая
- 11/52
- Следующая