Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Базы данных: конспект лекций - Коллектив авторов - Страница 4


4
Изменить размер шрифта:

Лекция № 3. Реляционные объекты данных

1. Требования к табличной форме представления отношений

1. Самое первое требование, предъявляемое к табличной форме представления отношений, – это конечность. Работать с бесконечными таблицами, отношениями или любыми другими представлениями и организациями данных неудобно, редко оправдываются затраченные усилия, и, кроме того, подобное направление имеет малое практическое приложение.

Но помимо этого, вполне ожидаемого, существуют и другие требования.

2. Заголовок таблицы, представляющей отношение, должен обязательно состоять из одной строки – заголовка столбцов, причем с уникальными именами. Многоярусных заголовков не допускается. Например, таких:

Все многоярусные заголовки заменяются одноярусными путем подбора подходящих заголовков. В нашем примере таблица после указанных преобразований будет выглядеть следующим образом:

Мы видим, что имя каждого столбца уникально, поэтому их можно как угодно менять местами, т. е. их порядок становится несущественным.

А это очень важно, поскольку является третьим свойством.

3. Порядок строк должен быть несущественным. Однако это требование также не является строго ограничительным, так как можно без труда привести любую таблицу к требуемому виду. Например, можно ввести дополнительный столбец, который будет определять порядок строк. В этом случае от перестановки строк тоже ничего не изменится. Вот пример такой таблицы:

4. В таблице, представляющей отношение, не должно быть строк-дубликатов. Если же в таблице встречаются повторяющиеся строки, это можно легко исправить введением дополнительного столбца, отвечающего за количество дубликатов каждой строки, например:

Следующее свойство также является вполне ожидаемым, потому что лежит в основе всех принципов программирования и проектирования реляционных баз данных.

5. Данные во всех столбцах должны быть одного и того же типа. И кроме того они должны быть простого типа.

Поясним, что такое простой и сложный типы данных.

Простой тип данных – это такой тип, значения данных которого не являются составными, т. е. не содержат составных частей. Таким образом, в столбцах таблицы не должны присутствовать ни списки, ни массивы, ни деревья, ни подобные названным составные объекты.

Такие объекты – составной тип данных – в реляционных системах управления базами данных сами представляются в виде самостоятельных таблиц-отношений.

2. Домены и атрибуты

Домены и атрибуты – базовые понятия в теории создания баз данных и управления ими. Поясним, что же это такое.

Формально, домен атрибута (обозначается dom(a)), где а – некий атрибут, определяется как множество допустимых значений одного и того же типа соответствующего атрибута а. Этот тип должен быть простым, т. е:

dom(a) ⊆ {x | type(x) = type(a)};

Атрибут (обозначается а), в свою очередь, определяется как упорядоченная пара, состоящая из имени атрибута name(a) и домена атрибута dom(a), т. е.:

a = (name(a): dom(a));

В этом определении вместо привычного знака «,» (как в стандартных определениях упорядоченных пар) используется «:». Это делается для того, чтобы подчеркнуть ассоциацию домена атрибута и типа данных атрибута.

Приведем несколько примеров различных атрибутов:

а1 = (Курс: {1, 2, 3, 4, 5});

а2 = (МассаКг: {x | type(x) = real, x 0});

а3 = (ДлинаСм: {x | type(x) = real, x 0});

Заметим, что у атрибутов а2 и а3 домены формально совпадают. Но семантическое значение этих атрибутов различно, ведь сравнивать значения массы и длины бессмысленно. Поэтому домен атрибута ассоциируется не только с типом допустимых значений, но и семантическим значением.

В табличной форме представления отношений атрибут отображается как заголовок столбца таблицы, и при этом домен атрибута не указывается, но подразумевается. Это выглядит следующим образом:

Нетрудно заметить, что здесь каждый из заголовков a1, a2, a3 столбцов таблицы, представляющей какое-то отношение, является отдельным атрибутом.

3. Схемы отношений. Именованные значения кортежей

В теории и практике СУБД понятия схемы отношения и именованного значения кортежа на атрибуте являются базовыми. Приведем их.

Схема отношения (обозначается S) определяется как конечное множество атрибутов с уникальными именами, т. е.:

S = {a | a ∈ S};

В каждой таблице, представляющей отношение, все заголовки столбцов (все атрибуты) объединяются в схему этого отношения.

Количество атрибутов в схеме отношений определяет степень этого отношения и обозначается как мощность множества: |S|.

Схема отношений может ассоциироваться с именем схемы отношений.

В табличной форме представления отношений, как нетрудно заметить, схема отношения – это не что иное, как строка заголовков столбцов.

S = {a1, a2, a3, a4} – схема отношений этой таблицы.

Имя отношения изображается как схематический заголовок таблицы.

В текстовой же форме представления схема отношений может быть представлена как именованный список имен атрибутов, например:

Студенты (№ зачетной книжки, Фамилия, Имя, Отчество, Дата рождения).

Здесь, как и в табличной форме представления, домены атрибутов не указываются, но подразумеваются.

Из определения следует, что схема отношения может быть и пустой (S = ∅). Правда, возможно это только в теории, так как на практике система управления базами данных никогда не допустит создания пустой схемы отношения.

Именованное значение кортежа на атрибуте (обозначается t(a))определяется по аналогии с атрибутом как упорядоченная пара, состоящая из имени атрибута и значения атрибута, т. е.:

t(a) = (name(a) : x), x ∈ dom(a);

Видим, что значение атрибута берется из домена атрибута.

В табличной форме представления отношения каждое именованное значение кортежа на атрибуте – это соответствующая ячейка таблицы:

Здесь t(a1), t(a2), t(a3) – именованные значения кортежа t на атрибутах а1, а2, а3.

Простейшие примеры именованных значений кортежей на атрибутах:

(Курс: 5), (Балл: 5);

Здесь соответственно Курс и Балл – имена двух атрибутов, а 5 – это одно из их значений, взятое из их доменов. Разумеется, хоть эти значения в обоих случаях равны друг другу, семантически они различны, так как множества этих значений в обоих случаях отличаются друг от друга.