Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Грин Брайан - Страница 41


41
Изменить размер шрифта:

Есть два возможных ответа на этот вопрос. Во-первых, струны действительно являются фундаментальными объектами — они представляют собой «атомы», неделимые компоненты в самом истинном смысле этого понятия, предложенного древними греками. Как наименьшие составные части материи, они представляют собой конец пути — последнюю матрешку — в многочисленных слоях, образующих структуру микромира. С этой точки зрения, даже если струны имеют определенные пространственные размеры, вопрос об их составе лишен какого-либо смысла. Если струны состоят из каких-то более мелких компонентов, они не могут быть фундаментальными. Напротив, из чего бы ни состояли струны, эти элементы немедленно займут место струн в притязании на роль наиболее фундаментальных компонентов мироздания. Используя нашу лингвистическую аналогию, можно сказать, что параграфы состоят из предложений, предложения — из слов, слова — из букв. А из чего состоит буква? С лингвистической точки зрения это конец пути. Буквы есть буквы — они представляют собой фундаментальные строительные блоки письменного языка; они не имеют внутренней структуры. Вопрос об их составе не имеет смысла. Аналогично струна представляет собой просто струну — поскольку нет ничего более фундаментального, нельзя описать струну как нечто, состоящее из каких-то других компонентов.

Это первый ответ. Второй ответ основывается на том простом факте, что сегодня мы не знаем, верна ли теория струн и является ли она окончательной теорией мироздания. Если теория струн неверна — ну что же, мы можем забыть струны и неуместный вопрос об их структуре. Хотя такая возможность существует, исследования, проводившиеся с середины 1980-х гг., показывают, что ее вероятность крайне мала. Однако история определенно научила нас, что каждый раз, когда мы углубляем наше понимание Вселенной, мы находим все меньшие компоненты микромира, составляющие более тонкий уровень организации материи. Итак, еще одна возможность, в случае если теория струн не окажется окончательной теорией, состоит в том, что струны образуют еще один слой в луковице мироздания, слой, который становится видимым в масштабах планковской длины, но который не является последним слоем. В этом случае струны могут состоять из еще более мелких структур. Специалисты по теории струн осознают такую возможность и ведут теоретические исследования в этом направлении. На сегодняшний день эти исследования привели к некоторым интригующим догадкам о более глубоких уровнях структуры, но они еще не получили окончательного подтверждения. Только время и дальнейшие исследования дадут окончательный ответ на этот вопрос.

За исключением некоторых гипотез, рассматриваемых в главах 12 и 15, мы будем рассматривать струны в том смысле, который следует из первого ответа, т. е. будем считать их наиболее фундаментальными компонентами мироздания.

Объединение через теорию струн

Помимо неспособности включить в себя гравитационное взаимодействие, стандартная модель обладает еще одним недостатком — она не дает описания устройства объектов, с которыми работает. Почему природа выбрала именно те частицы и взаимодействия, которые были описаны в предыдущих главах и перечислены в табл. 1.1 и 1.2? Почему 19 параметров, которые описывают количественные характеристики этих компонентов, имеют именно те значения, которые имеют? Ученым не удавалось отделаться от чувства, что количество и свойства этих объектов являются совершенно случайными. Скрывается ли за этими, на первый взгляд абсолютно произвольными компонентами, какой-то более глубокий смысл, или физические свойства мироздания являются просто «игрой случая»?

Стандартная модель сама по себе не способна дать объяснения всем этим фактам, поскольку она принимает список частиц и их свойств как полученные экспериментально входные данные. Как показатели фондового рынка не могут быть использованы для определения ценности портфеля акций, которым вы владеете, без входных данных о ваших начальных капиталовложениях, так и стандартная модель не может быть использована для получения предсказаний без входных данных, содержащих фундаментальные свойства частиц6). После того как экспериментаторы проведут тщательное измерение этих данных, теоретики смогут использовать стандартную модель для поддающихся проверке предсказаний, например, что произойдет, если столкнуть какие-то определенные частицы в ускорителе. Но стандартная модель в той же мере не способна объяснить фундаментальные свойства частиц, перечисленные в табл. 1.1 и 1.2, в какой среднее значение индекса Доу-Джонса не способно ответить на вопрос о начальных капиталовложениях, сделанных десять лет тому назад.

На самом деле, если эксперименты покажут, что в микромире существуют какие-то иные частицы или какие-то дополнительные взаимодействия, то в стандартной модели изменения могут быть легко учтены путем замены списка входных параметров. В этом смысле структура стандартной модели обладает слишком большой гибкостью, чтобы дать объяснение свойствам элементарных частиц: она охватывает целый диапазон различных возможностей.

Теория струн имеет совершенно иной характер. Это теоретическое здание единой и жесткой конструкции. Все входные данные, которые ей необходимы, ограничиваются описываемым ниже единственным параметром, который устанавливает шкалу для проведения измерений. Теория струн способна объяснить все свойства микромира. Чтобы понять это, обратимся сперва к более привычным струнам скрипки. Каждая струна может совершать огромное (на самом деле бесконечное) число различных колебаний, известных под названием резонансных колебаний. Пример таких колебаний показан на рис. 6.1. Это колебания, у которых расстояние между максимумами и минимумами одинаково, и между закрепленными концами струны укладывается в точности целое число максимумов и минимумов.

Рис. 6.1. У скрипичных струн существуют резонансные моды колебаний, на которых между концами струны укладывается целое число максимумов и минимумов.

Человеческое ухо воспринимает резонансные колебания как различные музыкальные ноты. Схожие свойства имеют струны в теории струн. Они могут осуществлять резонансные колебания, в которых вдоль длины струн укладывается в точности целое число равномерно распределенных максимумов и минимумов. Некоторые примеры таких колебаний показаны на рис. 6.2.

Рис. 6.2. Петли теории струн имеют резонансные моды колебаний, похожие на моды резонансных колебаний скрипичных струн. При этом вдоль длины струны укладывается в точности целое число максимумов и минимумов.

Основное утверждение теории струн таково. Точно так же, как различные моды резонансных колебаний скрипичных струн рождают различные музыкальные ноты, различные моды колебаний фундаментальных струн порождают различные массы и константы взаимодействия. Поскольку это очень важное утверждение, давайте повторим его еще раз. Согласно теории струн свойства элементарных «частиц» — их массы и константы различных взаимодействий — в точности определяются резонансными модами колебаний, реализуемыми внутренними струнами этих частиц.

Легче всего понять эту ассоциацию для массы частицы. Энергия конкретной моды колебания струны зависит от ее амплитуды — максимального расстояния между максимумами и минимумами, и от длины волны — расстояния между двумя соседними пиками. Чем больше амплитуда и чем короче длина волны, тем больше энергия. Это совпадает с нашими интуитивными представлениями — более интенсивные колебания несут больше энергии, менее интенсивные — меньше. Пара примеров показана на рис. 6.3.

Рис. 6.3. Более интенсивные колебания несут большее количество энергии, менее интенсивные — меньшее.