Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
По ту сторону смерти - Ледбитер Чарлз Уэбстер - Страница 22
То же самое верно для квадрата, который производит куб, смещаясь под прямым углом по отношению к самому себе. Наше определение квадрата различает в нем длину и ширину, но не толщину; поэтому любое число квадратов, наложенных друг на друга, никогда не смогут образовать куб. Если мы хотим измерить куб, мы должны умножить число два раза само на себя, но тогда нужно, чтобы используемая единица принадлежала к новому измерению. Это не может быть ни дюйм, ни квадратный дюйм — нужно, чтобы это был кубический дюйм. Так мы видим, что для каждого нового намерения мы имеем совершенно новую единицу, и что мера, применяющаяся в более высоком измерении, никогда не может выражаться через единицы меры более низкого измерения.
Второй момент, который следует рассмотреть, заключается в том, что когда мы перемещаем одну фигуру, чтобы получить новую, каждая точка первой фигуры должна давать соответствующую ей линию. Когда мы перемещаем линию под прямым углом, чтобы получить квадрат, мы должны предположить, что не только концы её дают новые линии. Каждая точка на всем протяжении этой линии тоже перемещается и посредством этого перемещения проводит новую линию. Точно так же, когда мы посредством перемещения квадрата получаем куб, это не просто перемещаются четыре линии, которые описывают квадрат, но каждая точка на всей поверхности квадрата, принимая участие в образовании куба, должна совершать движение, соответствующее прямому углу с поверхностью упомянутого квадрата. Вспомните, что квадрат не состоит просто исключительно из четырех линий, которые мы проводим, чтобы обозначить его пределы, но что поверхность в целом, заключенная внутри этих линий, есть квадрат. Заметьте еще, что, когда мы поднимаемся до более высокого измерения, нам открыта любая внутренняя точка более низкой фигуры, поскольку мы смотрим на неё таким образом, что ни одна из точек этой фигуры не может закрывать другую.
Когда мы применяем все эти данные к перемещению куба, которое происходит под прямым углом к другим измерениям куба, то какой вид будет у этой фигуры? Первое, что следует понимать, это то, что новая фигура, какой бы она ни была, не может измеряться какой-либо известной нам мерой. Любое число кубов никогда бы не могло составить такую фигуру, поскольку она обладает четвёртым измерением, и сама единица измерения должна быть совершенно иной природы.
Тессеракт
В заключение и посредством строгого рассуждения Хинтон получает некоторые факты относительно новой фигуры, которой он даёт имя тессеракт. Он объясняет нам, что она должна иметь шестнадцать вершин, тридцать два ребра и двадцать четыре грани. При этом она должна быть ограничена восемью кубами, так же как линия ограничена двумя точками, квадрат — четырьмя линиями, куб — шестью гранями, в то время как всего у куба двенадцать ребер и восемь вершин.
Предположим, что такая фигура существует на самом деле и что мы её видим. Какое впечатление произведет она на наши чувства? Мы явно не могли бы увидеть ее иначе, чем куб. Чтобы понять, почему это так, еще раз подумаем о нашем микробе, живущем в своем двумерном пространстве. Предположим, что на поверхности его мира мы поместили куб. Для него это будет ещё одно таинственное явление — что-то вроде материализации: но каким он будет выглядеть для него? Он сможет видеть только ту часть куба, которая соприкасается с его поверхностью, а следовательно, он, очевидно, воспримет его как квадрат. Он может представить себе предмет только в той форме, которая обусловлена границами его собственного сознания. Это высший момент в его понимании, поскольку он никоим образом не мог бы постичь того, что мы понимаем под кубом. И мы, на нашем физическом плане, видели бы тессеракт не иначе, как куб.
Тогда каким же образом, с нашим ограниченным сознанием, мы могли бы постичь идею этой фигуры в её настоящей форме? Те, кто занимался эмбриологией, знают, как изучается эмбрион в его различных состояниях. Например, изучающий берёт яйца с разной степенью инкубации и режет их на очень мелкие кусочки, рассматривая затем эти части под микроскопом. В каждом сечении имеется только очень маленькая часть эмбриона — она так мала, что её можно рассматривать почти как имеющую только два измерения. Но сопоставляя данные всех этих сечений, он получает — посредством этих образов в двух измерениях — форму эмбриона, имеющего три измерения. Таким же образом, если мы хотим передать существу из двумерного пространства идею предмета с тремя измерениями, мы должны это сделать посредством серии двумерных сечений: затем ему придется соединить в своём воображении все эти части таким образом, чтобы получить что-то, выходящее за рамки его нормального понимания. Вот что нужно сделать нам, если мы хотим представить себе фигуры с четырьмя измерениями. Мы думаем о серии сечений и пытаемся их соединить в своём воображении; и части эти всегда будут для нас фигурами с тремя измерениями, такими как куб.
Нам кажется, что мы окружены предметами с тремя измерениями. Но если четырёхмерное пространство существует, то тогда некоторые из них или все могут иметь четыре измерения, в то время как мы видим только ту их часть, которая в нашей ограниченности нам доступна. Например, все нам подобные существа могут иметь четыре измерения. В каждом из них поэтому может быть что-то, чего мы не можем даже видеть (и мы знаем из других источников, что это так). Очень заурядный человек на нашем плане, возможно, показался бы гораздо более развитым тому, кто способен видеть в других измерениях, а следовательно, видеть ту часть человека, которая называется душой.
В своих книгах Хинтон приводит очень хорошие примеры возможностей, которые представляет мир с четырьмя измерениями. Я постараюсь воспроизвести один из них, хотя для того, чтобы понять его до конца, необходима значительная и упорная концентрация мысли.
Прекрасная аналогия
Нам нужно ещё раз возвратиться к нашему микробу с двумя измерениями; но предположим на этот раз, что вместо того, чтобы жить на поверхности бумажного листа, он живёт на маленьком листочке воска. Представим теперь, что через этот листок мы протягиваем нить, держа её перпендикулярно: одна рука над поверхностью листка, а другая под ним. Если, держа нить натянутой и перпендикулярной, мы заставим её подниматься или спускаться через воск, микроб не сможет понять её движение. Он не сможет увидеть ничего, кроме дырки в поверхности, на которой он обитает и той части нити, которая заполняет эту дырку в данный момент. Если бы нить была не одинакова по толщине или её некоторые части были бы окрашены по-разному, микроб мог бы сознавать изменение размера или цвета видимой части. Получить представление о всей нити для него было бы совершенно невозможно. Если бы через лист мы продели конус вершиной вперёд, то ему показалось бы, что он видит маленький круг, появившийся внезапно и совершенно непонятным образом. Этот круг будет без конца расти и затем исчезнет так же внезапно и таинственно, как и появился. Микроб не мог бы понять, что этапы его развития, которые непременно показались бы ему последовательными во времени, на самом деле есть только различные части целого, одновременно существующие в пространстве, которое превосходит его собственное.
Но представьте теперь, что мы держим нить не перпендикулярно, а с наклоном в 45°, всё время натягивая её руками. Если теперь мы снова приведём нить в вертикальное положение, в поверхности воска будет уже не дыра, а щель. Если мы сообщим воску способность вновь соединяться после того, как он был разрезан нитью, то наше движение будет делать в листе перемещающуюся дыру. Её движение будет быстрым, если угол наклона нити к поверхности большой: и движение будет становиться всё медленнее по мере того, как наклон нити будет приближаться к вертикали. Но для нашего микроба это будет всё время движущаяся дыра или, скорее, движение частиц, которые заполняют дыру; и, естественно, единственное предположение, которое он сможет сделать, будет заключаться в том, что боковое движение, пронизывающее его мир, действительно является единственным движением, которым наделён его мир. Таким образом, мы видим, до какой степени он попадает под власть иллюзии, поскольку в этом случае единственным настоящим движением будет движение всей нити целиком, перемещающейся сверху вниз и снизу вверх.
- Предыдущая
- 22/86
- Следующая