Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Краткая история химии. Развитие идей и представлений в химии - Гельман З. Е. - Страница 19


19
Изменить размер шрифта:

Химики, имевшие дело с самыми обычными соединениями и пользовавшиеся самыми обычными методами, осуществить превращение, требовавшее участия жизненных сил, естественно, не могли.

Первые сомнения в справедливости такого утверждения возникли после опубликования в 1828 г. работы Фридриха Вёлера (1800—1882), немецкого химика, ученика Берцелиуса. Вёлера, в частности, интересовали цианиды и родственные им соединения. Нагревая цианат аммония (в то время это соединение безоговорочно причисляли к неорганическим веществам, не имеющим ничего общего с живой материей), Вёлер обнаружил, что в процессе нагревания образуются кристаллы, похожие на мочевину — продукт жизнедеятельности человека и животных, выделяющийся в значительных количествах с мочой. Тщательно изучив эти кристаллы, Вёлер установил, что он действительно получил мочевину — бесспорно органическое соединение.

Вёлер несколько раз повторил опыт и, убедившись, что он по своему желанию может превращать неорганическое соединение (цианат аммония) в органическое (мочевину), сообщил о своем открытии Берцелиусу. Берцелиус был упрямым человеком, который редко менял свое мнение под чьим-либо влиянием, однако в этом случае он вынужден был согласиться, что проведенное им, Берцелиусом, разделение на органические и неорганические соединения оказалось не таким четким, как он полагал.

Однако не надо переоценивать значения этой работы Вёлера [47]. Сама по себе она не столь уж существенна. Строго говоря, цианат аммония не является типичным неорганическим соединением, но даже если считать его таковым, то превращение цианата аммония в мочевину (как со временем и было показано) является просто результатом изменения расположения атомов внутри молекулы. И в самом деле, ведь молекула мочевины фактически является перестроенной молекулой все того же цианата аммония.

И тем не менее значение открытия Вёлера отрицать нельзя. Оно способствовало низвержению витализма [48] и вдохновило химиков на попытки синтеза органического вещества; не будь этого открытия, химики направили бы свои усилия в другом направлении.

В 1845 г. Адольф Вильгельм Герман Кольбе (1818—1884), ученик Вёлера, успешно синтезировал уксусную кислоту, считавшуюся в его время несомненно органическим веществом. Более того, он синтезировал ее таким методом, который позволил проследить всю цепь химических превращений — от исходных элементов (углерода, водорода и кислорода) до конечного продукта — уксусной кислоты. Именно такой синтез из элементов, или полный синтез, и был необходим. Если синтез мочевины Вёлера породил сомнения относительно существования «жизненной силы», то синтез уксусной кислоты Кольбе позволил решить этот вопрос.

Французский химик Пьер Эжен Марселен Бертло (1827—1907) [49]в 50-е годы XIX в. начал систематическую разработку синтеза органических соединений и достиг больших успехов. Он синтезировал, в частности, такие хорошо известные и важные соединения, как метиловый и этиловый спирты, метан, бензол, ацетилен. Бертло «нарушил границу» между неорганической и органической химией, покончив с пресловутым «запретом». В дальнейшем такое «нарушение границ» стало обычным.

«Кирпичики» жизни

Вёлер, Кольбе и Бертло синтезировали относительно простые органические соединения, тогда как для живой природы характерны значительно более сложные соединения типа крахмала, жиров и белков. Изучать такие соединения гораздо труднее; непросто даже установить их точный элементный состав. В целом изучение органических веществ обещало разгадку многих проблем, но подступиться к этим веществам химику прошлого века было совсем непросто.

Вначале об этих сложных соединениях было известно только то, что их можно разбить на сравнительно простые «строительные блоки» («кирпичики»), нагревая их с разбавленной кислотой или разбавленным основанием. Русский химик Константин Сигизмундович Кирхгоф (1764—1833) первым занялся детальным изучением этого вопроса. В 1812 г. ему удалось превратить крахмал, нагревая его с кислотой, в сахар, который впоследствии получил название глюкозы[50].

В 1820 г. французский химик Анри Браконно (1780—1854) таким же способом обрабатывал желатину (продукт денатурирования белка) и получил глицин — азотсодержащую органическую кислоту, относящуюся к той группе веществ, которые впоследствии были названы (Берцелиусом) аминокислотами. Глицин был первой из двадцати различных аминокислот, выделенных в следующем веке из природных белков [51].

И крахмал, и белок имеют гигантские молекулы, построенные, как выяснилось позднее, из длинных цепей, состоящих из остатков глюкозы и аминокислот соответственно. Химики XIX в. практически были лишены возможности синтезировать эти длинные цепи в лаборатории. Иначе дело обстояло с жирами.

Французский химик Мишель Эжен Шеврель (1786—1889) посвятил первую половину своей очень долгой творческой жизни изучению жиров. В 1809 г. он обработал мыло (полученное нагреванием жира со щелочью) кислотой и выделил то, что мы теперь называем жирными кислотами. Позднее он показал, что, превращаясь в мыло, жиры теряют глицерин.

Молекула глицерина сравнительно простая и построена таким образом, что к ней легко могут «прикрепиться» дополнительные группы атомов.

Следовательно, вполне логично было предположить, что, в то время как крахмал и белки, скорее всего, построены из большого числа простых остатков молекул, с жирами дело обстоит иначе. До середины XIX в. считалось, что жиры, вероятно, построены из остатков только четырех молекул: молекулы глицерина и трех молекул жирных кислот.

На этом этапе свое слово сказал Бертло. В 1854 г. он, нагревая глицерин со стеариновой кислотой (одной из самых распространенных жирных кислот, полученных из жиров), получил молекулу, состоящую из остатка молекулы глицерина и трех остатков молекул стеариновой кислоты. Этот тристеарин, который оказался идентичен тристеарину, полученному из природных жиров, был самым сложным из синтезированных к тому времени аналогов природных продуктов.

Бертло сделал еще более важный шаг. Вместо стеариновой кислоты он взял кислоты, похожие на нее, но полученные не из природных жиров, и также нагрел их с глицерином. В результате Бертло получил соединения, очень похожие на обычные жиры, но несколько отличающиеся от любого из природных жиров.

Этот синтез показал, что химик не только способен синтезировать аналоги природных продуктов, он в состоянии сделать большее. Например, он может синтезировать из продуктов неживой природы соединение, по всем своим свойствам являющееся органическим. Именно с синтезом аналогов природных продуктов связаны самые крупные достижения органической химии второй половины XIX в. (см. гл. 10).

К середине XIX в. стало уже непопулярным причислять то или иное соединение к органическим или неорганическим, исходя лишь из того, является или не является оно продуктом живой ткани. В то время уже были известны такие органические соединения, которые никак не могли быть продуктами жизнедеятельности организмов. Тем не менее деление соединений на органические и неорганические имело смысл. Свойства соединений этих классов, как выяснилось, настолько различаются, что даже приемы работы химика-органика и химика-неорганика совершенно различны.

Становилось все более очевидным, что различие между органическими и неорганическими соединениями обусловлено особенностями химического строения молекул этих соединений. Многие химики начали говорить о разных типах строения молекул органических и неорганических соединений. Молекулы большинства неорганических веществ, с которыми имели дело химики XIX в., содержат всего от двух до восьми атомов. Да и вообще в молекулах очень немногих неорганических соединений число атомов достигает десятка.

вернуться

[47] См.: Мусабеков Ю. С. Историческая оценка синтеза Вёлера.— Вопросы истории естествознания и техники, 1957, вып. 5, с. 66—73.

вернуться

[48] Впрочем, это было только первое поражение витализма, который продолжал удерживать свои позиции в других областях химии. Несмотря на медленное ослабление его позиций на протяжении XIX в., окончательно витализм не исчез и сегодня. Полное описание различных этапов крушения витализма можно найти в кн. «Краткая история биологии» (Азимов А. Краткая история биологии. Пер. с англ, — М.: Мир, 1967).

вернуться

[49] См.: Мусабеков Ю. С. Марселен Бертло. 1827—1907.— М.: Наука, 1965, 231 с.

вернуться

[50] См.: Шамин А. Н., Джабраилова Н. А. Развитие химии аминокислот.— М.: Наука, 1974, 152 с.

вернуться

[51] Это утверждение уже устарело. В 1963 г. впервые был синтезирован природный белок — инсулин. Сейчас методы синтеза белков значительно усовершенствованы, и их синтез уже не является проблемой. Химики могут синтезировать и другие сложнейшие природные биополимеры — нуклеиновые кислоты. См.: Шамин А. Н. Химический синтез белка (исторический очерк).— М.: Наука, 1969, 115 с.