Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Основы нейрофизиологии - Шульговский Валерий Викторович - Страница 11


11
Изменить размер шрифта:

Из тормозных медиаторов ГАМК является самой распространенной в ЦНС. Она синтезируется из L-глутаминовой кислоты в одну стадию ферментом декарбоксилазой, наличие которой является лимитирующим фактором этого медиатора. Известно два типа ГАМК-рецепторов на постсинаптической мембране: ГАМКА (открывает каналы для ионов хлора) и ГАМКБ (открывает в зависимости от типа клетки каналы для. K+ или Ca++). На рис. 2.18 показана схема ГАМК-рецептора. Интересно, что в его состав входит бензодиазипиновый рецептор, наличием которого объясняют действие так называемых малых (дневных) транквилизаторов (седуксена, тазепама и др.). Прекращение действия медиатора в ГАМК-синапсах происходит по принципу обратного всасывания (молекулы медиатора специальным механизмом поглощаются из синаптической щели в цитоплазму нейрона). Из антагонистов ГАМК хорошо известен бикукулин. Он хорошо проходит через гематоэнцефалический барьер, оказывает сильное воздействие на организм даже в малых дозах, вызывая конвульсии и смерть. ГАМК обнаруживается в ряде нейронов мозжечка (в клетках Пуркинье, клетках Гольджи, корзинчатых клетках), гиппокампа (в корзинчатых клетках), в обонятельной луковице и черной субстанции.

Идентификация ГАМК-цепей мозга трудна, так как ГАМК – обычный участник метаболизма в ряде тканей организма. Метаболическая ГАМК не используется как медиатор, хотя в химическом отношении их молекулы одинаковы. ГАМК определяется по ферменту декарбоксилазы. Метод основан на получении у животных антител к декарбоксилазе (антитела экстрагируют, метят и вводят в мозг, где они связываются с декарбоксилазой).

Другим известным тормозным медиатором является глицин. Глицинергические нейроны находятся главным образом в спинном и продолговатом мозге. Считают, что эти клетки выполняют роль тормозных интернейронов.

Ацетилхолин – один из первых изученных медиаторов. Он чрезвычайно широко распространен в нервной периферической системе. Примером могут служить мотонейроны спинного мозга и нейроны ядер черепных нервов. Как правило, холинергические цепи в мозге определяют по присутствию фермента холинэстеразы. В головном мозге тела холинергических нейронов находятся в ядре перегородки, ядре диагонального пучка (Брока) и базальных ядрах. Нейроанатомы считают, что эти группы нейронов формируют фактически одну популяцию холинергических нейронов: ядро переднего мозга, nucleus basalis (оно расположено в базальной части переднего мозга) (рис. 2.19). Аксоны соответствующих нейронов проецируются к структурам переднего мозга, особенно в новую кору и гиппокамп. Здесь встречаются оба типа ацетилхолиновых рецепторов (мускариновые и никотиновые), хотя считается, что мускариновые рецепторы доминируют в более рострально распоженных мозговых структурах. По данным последних лет складывается впечатление, что ацетилхолиновая система играет большую роль в процессах, связанных с высшими интегративными функциями, которые требуют участия памяти. Например, показано, что в мозге больных, умерших от болезни Альцгеймера, наблюдается массивная утрата холинергических нейронов в nucleus basalis.

ОПИАТНЫЕ РЕЦЕПТОРЫ И ОПИОИДЫ МОЗГА

Морфин и кодеин – два активных ингредиента морфия. Морфин был очищен в XIX веке и стал широко применяться в медицине. Механизм действия морфина на мозг довольно хорошо изучен благодаря тому, что было синтезировано вещество налоксон, которое является специфическим антагонистом морфина. Сам по себе налоксон неактивен, но действие введенного на его фоне морфина не проявляется. То, что налоксон имеет химическую отруктуру, похожую на морфин, и является его специфическим антагонистом, предполагает наличие на мембране специфических для морфина рецепторов. Использование меченого налоксона показало его специфическое связывание на рецепторах нейронов областей мозга, имеющих отношение к боли. Из мозга голубей было выделено вещество, получившее название энкефалин (т.е. морфин мозга), обладающее свойством морфина. В дальнейшем были открыты другие опиоиды мозга. Эту группу веществ в целом называют эндорфинами.

В настоящее время установлено, что синтез нейропептидов состоит в образовании относительно больших пептидов-предшественников, из которых после завершения трансляции выщепляются протеазами соответствующие нейропептиды. В состав такого пептида-предшественника входят обычно несколько последовательностей нейропептидов, а также так называемая сигнальная последовательность, способствующая миграции предшественника в цитоплазме клетки, после того как его синтез закончился на мембранах эндоплазматического ретикулума. В настоящее время известны следующие нейропептиды: 1) опиоидные пептиды – энкефалины, эндорфины, динорфины; 2) тахикинины-вещество Р, иейрокинин А, нейромедин К; 3) нейротензин; 4) вазоактивный интестинальный полипептид; 5) соматостатин; 6) холицистокинин; 7) нейропептид Y; 8) гастрин; 9) вазопрессин; 10) окситоцин; 11) бомбезин; 12) тиротропин; 13) ангиотензин.

Вопросы

1. Основные органеллы клетки.

2. Какие отростки имеет нейрон?

3. Какова функция глиальных клеток?

4. Потенциал покоя и потенциал действия – ионные механизмы.

5. Последовательность событий в синаптическом проведении.

6. Медиаторы и их распространение в центральной нервной системе.

Литература

Нейрохимия/Под ред. И. П. Ашмарина и П. В. Стукаловой. М.: Изд-во Ин-та биомедицинской химии РАМН РФ, 1996.

Ходжкин А. Нервный импульс. М.: ИЛ, 1965

Шульговский В. В. Физиология центральной нервной системы: Учебник для университетов Изд-во Моск. ун-та, 1987.

Экклс Дж. Физиология синапсов. М.: Мир, 1966.

Глава 3

АКТИВИРУЮЩИЕ СИСТЕМЫ МОЗГА

ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ СНА

Природа сна постоянно интересует врачей, ученых разных специальностей-биологов, психологов, философов, да и простых людей. Величайшие мыслители уже давно обсуждали эту проблему. Великий врач древности Гиппократ полагал, что сон возникает в результате оттока крови и тепла во внутренние области тела. Другой великий античный ученый Аристотель (384–322 гг. до н.э.) объяснял сон тем, что пары, возникающие при переваривании пищи в желудке, разносятся по всему телу через гуморы (жидкости), вызывая сон. Это объяснение владело умами европейских ученых и принималось на веру почти две тысячи лет.

Несмотря на то, что все высшие позвоночные животные спят, а человек проводит во сне не менее трети своей жизни, природа и назначение этого состояния оставались неизвестными на протяжении веков. Хорошо известна была лишь витальная (жизненная, от лат. vita – жизнь) необходимость сна. Сон улучшает настроение, память, восстанавливает работоспособность человека. Психиатры всегда подчеркивали, что расстройство сна нередко является первым симптомом (признаком) психического заболевания. Современное состояние этой проблемы определяется открытиями в науке начала XX века. В свою очередь, эти открытия стали возможны благодаря созданию новых методов исследования. Прежде всего это методы полиграфической регистрации физиологических процессов во время сна (т.е. одновременной регистрации нескольких физиологических функций работы сердца, дыхания, мозга). Большую роль сыграли также методы биохимического анализа биологически активных веществ, участвующих в процессах сна, и, наконец, психологические исследования, благодаря которым стремительно накапливались новые данные, однако интегрировать их в целостную концепцию оказалось весьма непросто.