Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Большая Советская Энциклопедия (ЯД) - Большая Советская Энциклопедия "БСЭ" - Страница 11


11
Изменить размер шрифта:

  Выход Я. р. — отношение числа актов Я. р. к числу частиц, упавших на 1 см2 мишени. Для тонкой мишени и однородного потока частиц выход Я. р. W = n s, где n — число ядер на 1 см2 мишени. Заряженные частицы, ионизируя атомы мишени, теряют энергию и останавливаются. Их пробег в мишенях порядка мкм или см в зависимости от энергии. В результате выходы Я. р. также малы (10-3 — 10-6 ). Для Я. р. с частицами высоких энергий выход больше. Для частиц, которые могут вызывать Я. р. при любой энергии (нейтроны, p-мезоны), выход при достаточно больших мишенях может достигать 1.

  Продукты Я. р. образуются в небольшом количестве: для ускоренных налетающих частиц порядка нескольких мг в час; в мощных ядерных реакторах (Я. р. под действием нейтронов) — нескольких г в час. Концентрация получаемых продуктов, как правило, мала. Для их выделения и идентификации используются методы радиохимии и масс-спектрометрии. Регистрация продуктов Я. р. осуществляется детекторами ядерных излучений .

  Механизмы Я. р . Налетающая частица, например нуклон, может войти в ядро и вылететь из него под другим углом, но с той же энергией (упругое рассеяние). Нуклон может столкнуться непосредственно с нуклоном ядра; при этом, если один или оба нуклона имеют энергию, большую, чем энергия, необходимая для вылета из ядра, то они могут покинуть ядро без взаимодействия с другими его нуклонами (прямой процесс). Существуют и более сложные прямые процессы, при которых энергия налетающей частицы передаётся непосредственно одному или небольшой группе нуклонов ядра (см. Прямые ядерные реакции ). Если энергия, внесённая влетевшей частицей, постепенно распределится между многими нуклонами ядра, то ядерные состояния будут становиться всё более и более сложными, однако через некоторое время наступит динамическое равновесие — различные ядерные конфигурации будут возникать и распадаться в образовавшейся системе, называемой составным ядром . Составное ядро неустойчиво и через короткое время распадается на конечные продукты Я. р. Если в некоторых конфигурациях энергия одного из нуклонов окажется достаточной для его выброса из ядра, то составное ядро распадается с испусканием нуклона. Если же энергия сосредоточивается в некоторых группах частиц, существующих в составном ядре короткое время, то возможно испускание альфа-частиц ,тритонов ,дейтронов и др. При энергиях возбуждения составного ядра, меньших энергии отделения от него частиц, единственный путь его распада — испускание g-квантов (радиационный захват ). Иногда выброс частиц происходит до того, как установилось равновесие, т. е. до образования составного ядра (механизм предравновесного распада).

  Различные механизмы Я. р. отличаются разным временем протекания. Наименьшее время имеет прямая Я. р. Это время, которое необходимо частице, чтобы пройти область пространства, занимаемую ядром (~ 10-22сек ). Среднее время жизни составного ядра значительно больше (до 10-15 — 10-16сек ). При малых энергиях налетающих частиц основным механизмом Я. р., как правило, является образование составного ядра (за исключением Я. р. с дейтронами). При больших энергиях преобладают прямые процессы.

  Характер зависимости эффективных сечений Я. р. s от энергии x налетающих частиц s(x) различен для разных механизмов Я. р. Для прямых процессов зависимость s(x) имеет монотонный вид. В случае Я. р., идущих с образованием составного ядра, при малых энергиях частиц в s(x) наблюдаются максимумы, которые соответствуют уровням энергии составного ядра. В области больших энергий (x ³ 15 Мэв для средних и тяжёлых ядер) уровни энергии составного ядра перекрываются и сечение монотонно зависит от энергии. На этом фоне выделяются более широкие максимумы, соответствующие возбуждению изобар-аналоговых состояний (состояний ядра, у которых изотопический спин больше, чем в основном состоянии), а также т. н. гигантские резонансы. Эти более широкие максимумы соответствуют уровням ядра, образующимся при слиянии ядра с налетающей частицей; они имеют более простую структуру, чем уровни составного ядра. Время жизни т возбуждённого ядра связано с полной шириной Г наблюдаемых максимумов соотношением:

 (
— Планка постоянная ).

  При распаде составного ядра конечное ядро может образовываться как в основном, так и в возбуждённых состояниях. Энергетический спектр продуктов распада составного ядра в области более высоких энергий состоит из отдельных линий, в области низких энергий вылетающих частиц имеет широкий максимум. Угловое распределение конечных продуктов (в системе центра масс) в резонансной области энергии симметрично относительно направления, образующего угол 90° с направлением налетающих частиц. В области энергии, где энергетические уровни составного ядра перекрываются, квантовые характеристики различных уровней составного ядра усредняются и угловое распределение испускаемых частиц оказывается, как правило, сферически симметричным.

  Частицы — продукты Я. р., как правило, поляризованы. Поляризация возникает и в том случае, когда пучок бомбардирующих частиц не поляризован. Если же он поляризован, то наблюдается азимутальная асимметрия продуктов Я. р. (см. Поляризованные нейтроны , Ориентированные ядра ).

  Я. р. под действием нейтронов в большинстве случаев протекают с поглощением энергии Q . При Я. р. (n, p) для большинства ядер Q невелико (исключение составляют 3 H и 14 N). Для Я. р. (п, а) в случае лёгких ядер поглощаемая энергия Q также невелика (исключение составляют 6 Li и 10 B), для средних и тяжёлых ядер выделяется небольшое количество энергии. Я. р., в которых образуется больше 2 частиц, протекают с поглощением энергии, равной энергии, необходимой для отделения нейтрона от ядра, например для Я. р. (n, 2n) она~10 Мэв . Особое место в этом смысле занимает реакция деления тяжёлых ядер, которая сопровождается выделением большого количества энергии. Реакция деления для некоторых ядер (например, 238 U) имеет энергетический порог (нейтроны должны иметь достаточно большую энергию), связанный с необходимостью преодоления потенциального барьера деления. Деление под действием медленных нейтронов испытывают ядра 235 U, 242 Am, 245 Cm, 249 Cf (см. Ядра атомного деления ).

  Для медленных нейтронов основной процесс — радиационный захват нейтрона — Я. р. (n, g). Исключение составляют 3 He и 14 N, для которых основной процесс — Я. р. (n, p), а также 6 Li и 10 B, для которых преобладает Я. р. (n, a). У средних и тяжёлых ядер потенциальный барьер препятствует вылету протонов и a-частиц. Область энергий xn медленных нейтронов является резонансной. Большинство ядер обнаруживает резонансный захват при xn ³ нескольких эв . При xn < 1 эв для большинства ядер эффективное сечение захвата обратно пропорционально скорости нейтронов (закон 1/v ).

  С увеличением энергии нейтронов xn уменьшается вероятность резонансного захвата и увеличивается вероятность их упругого рассеяния ядрами (n,n’). Когда xn становится больше энергии первого возбуждённого состояния ядра-мишени (десятки и сотни кэв ), возможно неупругое рассеяние нейтронов (n,n’). При xn порядка нескольких Мэв главную роль играют упругое и неупругое рассеяния нейтронов; становятся заметными Я. р. (n, p) и (n, a), однако их сечения меньше сечения (n, n'). Когда xn достигает 5—10 Мэв , преобладающую роль играют Я. р. (n, 2n).