Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ЭЙ) - Большая Советская Энциклопедия "БСЭ" - Страница 7
Лит.: Erneström G., Verzeichnis der Schriften Leonard Eulers, Lfg 1—2, Lpz., 1910—13 (Jahresbericht der Deutschen Mathematiker—Vereinigung. Ergänzungsband 4, Lfg 1—2) [лит.]; Fuss N., Eloge de monsieur Léonard Euler..., St. Pb., 1783 (лит.); в рус. пер.— Похвальная речь покойному Леонарду Эйлеру..., в кн.: Академические сочинения, выбранные из первого тома Деяний Академии наук, под заглавием: Nova Acta Academiae scientiarum imperialis Petropolitanae, ч. 1, СПБ, 1801; Симонов Н. И., Прикладные методы анализа у Эйлера, М., 1957; Леонард Эйлер. Сб. ст., М., 1958; Рукописные материалы Л. Эйлера в Архиве Академии наук СССР, т. 1, М.—Л., 1962; Юшкевич А. П., История математики в России до 1917 года, М., 1968.
По материалам одноимённой статьи из 2-го издания БСЭ.
Л. Эйлер.
Эйлер Ульф Сванте фон
Э'йлер, Эйлер-Хельпин (von Euler-Chelpin) Ульф Сванте фон (р. 7.2.1905, Стокгольм), шведский физиолог. Сын Х. Эйлера-Хельпина . Окончил Каролинский институт в Стокгольме (1929), где с 1930 ассистент кафедры фармакологии, с 1939 профессор физиологии. В 1930 работал в лаборатории Г. Дейла в Лондоне, где открыл существование в кишечной ткани биологически активного вещества «субстанции Р». Основные труды по физиологии адренергических нервных окончаний. Установил, что норадреналин является медиатором симпатической нервной системы. Подробно исследовал его распределение в нервах и органах, обмен при разных физиологических и патологических состояниях. Обнаружил и исследовал функциональную роль простагландинов (1936) и норадреналина (1946). Открыл субклеточные частицы, содержащие норадреналин, и вскрыл механизмы захвата, хранения, освобождения норадреналина этими частицами. Член Королевской шведской АН, Датской АН, Германской академии естествоиспытателей «Леопольдина», Лондонского королевского общества (1973). Нобелевская премия (1970, совместно с Б. Кацем , и Дж. Аксельродом ).
Соч.: Noradrenaline. Springfield, 1956; Prostaglandins, N. Y.—L., 1967 (совм. с R. Eliasson).
Л. Г. Магазаник.
Эйлера метод ломаных
Э'йлера ме'тод ло'маных, один из простейших методов численного решения дифференциальных уравнений. Предложен Л. Эйлером в 1768. См. Приближённое решение дифференциальных уравнений.
Эйлера период
Э'йлера пери'од, вычисленный Л. Эйлером на основании некоторых теоретических допущений период в движении полюсов Земли. См. Полюсы географические .
Эйлера подстановки
Э'йлера подстано'вки, подстановки, служащие для приведения интегралов вида
,где
и R (x , y ) — рациональная функция от х и у , к интегралам от рациональных функций (см. Интегральное исчисление ). Предложены Л. Эйлером в 1768. Первая Э. п.применима, если а >0; вторая Э. п.
применима, если с > 0; третья Э. п.
где l — один из корней трёхчлена ax2 + bx + c , применима, если корни этого трёхчлена действительны. На практике Э. п. требуют громоздких преобразований и потому вместо них обычно пользуются теми или иными искусств. приёмами, упрощающими вычисление.
Аналогичные подстановки делаются в теории чисел при решении неопределённых уравнений 2-й степени в рациональных числах.
Эйлера постоянная
Э'йлера постоя'нная, предел
С= 0,577215 ...,рассмотренный Л. Эйлером в 1740. Эйлер дал для С ряд представлений в форме рядов и интегралов; например,
,,где x(s ) — дзета-функция . Встречается в теории различных классов специальных функций, например гамма-функции . До сих пор неизвестно, является ли Э. п. иррациональным числом.
Эйлера уравнение
Э'йлера уравне'ние,
1) дифференциальное уравнение вида
, (*)где ao ,... , an — постоянные числа; при х> 0 уравнение (*) подстановкой х = et сводится к линейному дифференциальному уравнению с постоянными коэффициентами. Изучалось Л. Эйлером с 1740. К уравнению (*) сводится подстановкой x' = ax + b уравнение
.2) Дифференциальное уравнение вида
,где X (x ) = a x4 + a1 x3 + a2x2 + a3 x + a4 , Y (y ) = а у4 +а1 у3+а2 у2+а3 у +a4 . Л. Эйлер рассматривал это уравнение в ряде работ начиная с 1753. Он показал, что общее решение этого уравнения имеет вид F (х , у ) = 0, где F (х , у ) — симметричный многочлен четвёртой степени от х и у. Этот результат Эйлера послужил основой теории эллиптических интегралов.
3) Дифференциальное уравнение вида
'служащее в вариационном исчислении для разыскания экстремалей интеграла
.Выведено Л. Эйлером в 1744.
Эйлера уравнения
Э'йлера уравне'ния,
1) в механике — динамические и кинематические уравнения, используемые при изучении движения твёрдого тела; даны Л. Эйлером в 1765.
Динамические Э. у. представляют собой дифференциальные уравнения движения твёрдого тела вокруг неподвижной точки и имеют вид
Ix + (Iz — Iy ) wy wz = Mx ,
Iy
+ (Ix — Iz ) wz wx = My , (1)Iz + (Iy — Ix ) wx wy = Mz ,
где Ix , Iy , Iz — моменты инерции тела относительно гл. осей инерции, проведённых из неподвижной точки, wх , wу , wz — проекции мгновенной угловой скорости тела на эти оси, Mx , My , Mz — гл. моменты сил, действующих на тело, относительно тех же осей;
, , — проекции углового ускорения.- Предыдущая
- 7/17
- Следующая