Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Большая Советская Энциклопедия (ЭН) - Большая Советская Энциклопедия "БСЭ" - Страница 26


26
Изменить размер шрифта:

  Развитие энергетики как глобальной системы проявляется прежде всего в плане социальном. Разрыв в культурном и экономическом уровне разных стран в значительной мере обусловлен разницей в обеспечении их энергией, энерговооруженностью труда. Так, например, на долю населения, проживающего в развивающихся странах, приходится не более 7% мирового потребления всех видов энергии. Такое неравномерное энергетическое, а следовательно, экономическое и культурное развитие отражает противоречия мировой капиталистической системы и стимулирует экономические и политические конфликты, наиболее ярко проявившиеся в энергетическом кризисе 70-х гг. 20 в.

  Управление Э. сводится к целенаправленному оптимизируемому воздействию на большую систему энергетики с помощью методов и технических средств кибернетики. Управление Э. имеет целью достижение в данном промежутке времени таких показателей ее работы, которые наиболее близко подходили бы к принятым критериям эффективности. В процессе управления достигается состояние Э., при котором управляющие воздействия, осуществляемые целенаправленно в определенной зависимости от внешних условий, обеспечивают достижение поставленной цели. Управление Э. включает: оптимизацию решении, т. е. определение наилучшего плана системы; реализацию этих решений, т. е. осуществление этого плана в конкретных условиях. Первое часто называют оптимизацией развития, а второе — оптимизацией функционирования. Эффективность управления Э. в основном обеспечивается достижением оптимальных темпов и пропорций в развитии единого топливно-энергетического комплекса и входящих в него энергетических подсистем (рис. ); применением новой техники, которая могла бы обеспечить научно-технический прогресс в энергетике и своевременное развитие энергетической техники; наиболее рациональным (при сложившихся условиях) использованием всех материальных и трудовых ресурсов страны.

  Работа Э. может быть охарактеризована степенью использования запасов энергетических ресурсов. Конечным результатом функционирования Э. является полезная энергия, т. е. та, которая после переработки, преобразования, транспортирования и хранения ресурсов поступает к потребителям и обеспечивает полезные энергетические процессы. Основными видами энергетических ресурсов являются топливные — уголь, нефть, природный газ, торф, сланцы, древесина и нетопливные — энергия воды (гидроэнергия), ядерная энергия, а также используемая частично энергия ветра, морских приливов и солнечной радиации; ресурсы подразделяются на возобновляемые (гидроэнергия, ветроэнергия, энергия приливов и солнечной радиации) и невозобновляемые (уголь, нефть, газ, сланцы).

  Для соизмерения ресурсов и определения их экономичности пользуются понятием «условное топливо». Геологические (прогнозные) мировые запасы топлива (уголь, газ и т. д.) составляют 11 651 млрд. т, причем 54,5% их находятся в СССР. Мировые запасы топлива, доступные для извлечения, составляют 3112 млрд. т, из них 55% находятся в СССР. Гидроэнергоресурсы в пересчете на годовую выработку электроэнергии оцениваются в 7500 млрд. квт ·ч (в 1,5 раза больше того количества электроэнергии, которое было выработано всеми электростанциями мира в 1970). Используемое в Э. топливо разделяется на энергетическое (для выработки электроэнергии и тепла на электростанциях, в районных и промышленных котельных) и технологическое (используемое в промышленных установках для выполнения рабочих процессов, а также в промышленных печах, и др.). Уровень использования энергоресурсов может быть оценен коэффициентом извлечения потенциальных ресурсов, который определяется как отношение используемого количества энергетических ресурсов к их потенциальным запасам. Применяется также коэффициент полезного использования в энергопотребляющих процессах по отраслям производства и по хозяйству страны в целом; этот коэффициент представляет собой произведение кпд отдельных процессов — от добычи энергоресурсов до их использования.

  Все процессы, связанные с функционированием Э., прогнозированием и планированием ее работы, являются предметом изучения общей теории Э. (энергетики). Большие системы энергетики и их теория стали развиваться в основном во 2-й половине 20 в. Начало 60-х гг. характеризовалось качественно новым направлением развития советской энергетики, заключавшимся в концентрации энергетических мощностей, формированием объединённых электроэнергетических систем, созданием электроэнергетической системы «Мир» , объединившей Единую электроэнергетическую систему Европейской части Советского Союза с Э. стран — членов СЭВ. При этом учитывается, что масштабы и темпы производства энергоресурсов в конечном итоге определяют уровень энерговооружённости труда во всех отраслях народного хозяйства, причём электроэнергетические системы потребляют до 80% всего топлива, добываемого в стране (из них 30% — на выработку электроэнергии, 50% — на выработку тепла); остальное топливо идёт на удовлетворение технологических нужд производства. Тепловая потребность СССР примерно на 30% обеспечивается теплоэлектроцентралями, оставшиеся 70% дефицита тепла — промышленными и коммунальными котельными, а также нагревателями и печами индивидуального пользования. При этом тепло распределяется следующим образом: промышленность и транспорт — 43%, жилищно-коммунальное хозяйство городов — 33%, с.-х. производство и бытовое потребление — 24%.

  Большое значение при определении эффективности использования топлива имеют условия его доставки. В СССР себестоимость транспортировки топлива на 1 км составляет: уголь (по железной дороге) — 0,1—0,2 коп. за 1 т ; мазут — 0,15—0,30 коп. за 1 т; газ (по газопроводам) — 0,15—0,70 коп. за 1000 м3 нефть (по нефтепроводам) — 0,05—0,15 коп. за 1 т. Сравнительная экономичность топлива определяет затраты по его добыче, перевозке, хранению и приготовлению к использованию.

  В управлении Э. СССР заложены принципы и организационные формы, отвечающие единству хозяйственного и политического руководства, плановости ведения энергетического хозяйства, системному подходу к управлению Э., сочетанию отраслевого и территориального управления, иерархическому принципу при организации управления энергетикой, а также обязательный учёт влияния энергетики на окружающую среду. Последнее обстоятельство приобретает всё большее значение, оно требует увеличенных капиталовложений и повышенного внимания к проблеме загрязнения окружающей среды. Мероприятия, направленные на снижение неблагоприятного влияния работы электростанций на окружающую среду, предусматриваются как органическая часть любого энергетического сооружения ещё на стадии его проектирования, а не как некие дополнительные установки к уже построенному энергетическому комплексу. Это необходимо прежде всего в связи с ростом установленных мощностей энергетических объектов, превращающих ежегодно во всём мире не менее 6—7 млрд. т условного топлива в различные виды энергии. Такие масштабы «энергетического воздействия» человека на природу становятся соизмеримы с масштабами естественных геофизических и геологических явлений, меняющих климатический облик Земли. Количество энергии, вырабатываемой на Земле, пока ещё составляет сотые доли % от того количества энергии, которое Земля получает от Солнца, но её тепловой эффект уже достаточно заметно сказывается на климате, особенно тех «энергетически напряжённых» районов, где происходит т. н. тепловое загрязнение биосферы . Последнее обусловлено тем, что превращение энергии в энергоустановках происходит с весьма низким кпд (8—10% у подвижных и 25—30% у стационарных установок). В результате огромное количество тепла идёт на подогрев воды, почвы, воздуха. К существенно неприятным последствиям приводят ошибки, допущенные в проектировании водохранилищ ГЭС, ориентированных только на задачи гидроэнергетики . Большой вред биосфере приносят выбросы в атмосферу продуктов сгорания топлива (золы, окислов азота, двуокиси серы, сернистого ангидрида и др.). Все эти вредные экологические влияния могут быть значительно снижены (а в перспективе ликвидированы) при системном подходе к проектированию энергоустановок, когда Э. рассматривается как система, взаимодействующая с другими системами жизнедеятельности человека и биосферой. К экологическим проблемам могут быть также отнесены трудности развития энергетики, обусловленные ростом площадей и объёмов, требующихся под энергетические сооружения. Однако и здесь интенсивная работа над конструкцией инженерных сооружений и эксплуатационными характеристиками энергетического оборудования позволяет резко снизить объёмы и площади, занимаемые ими: если, например, в 1900 на 1 квт мощности электростанций требовался рабочий объём 50м3, то в 50-х гг. 20 в. этот объём составлял уже около 6 м3 , а к 1975 в связи с техническим усовершенствованием энергетического оборудования эта величина снизилась до десятых долей м3 .