Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Большая Советская Энциклопедия (ЭЛ) - Большая Советская Энциклопедия "БСЭ" - Страница 19


19
Изменить размер шрифта:

  В электростатическом (ионном) РД вначале производится ионизация РТ, после чего ионы и электроны раздельно ускоряются в электростатическом поле (при помощи системы электродов), а затем вновь перемешиваются для нейтрализации объёмного заряда и, истекая, создают тягу (рис. 3 ). Различают электростатические РД с поверхностной ионизацией и объёмной ионизацией (электронным ударом); в качестве РТ в первых используется легко ионизируемый цезий, во вторых — любые вещества с большой атомной массой (например, висмут). Вместо ионов в электростатических РД могут ускоряться заряженные (например, за счёт контактной разности потенциалов при отрыве капли от поверхности электрода) микроскопические капли. Такие ЭРД называются коллоидными. Значение ускоряющего потенциала составляет для них около 10—20 кв (для ионных РД — 2—7 кв ) при плотности тока в несколько ма/см2. Удельный импульс электростатических РД 15—100 (кн ·сек )/кг, плотность тяги 30—50 н/м2, время работы — 1 год и более.

  В электромагнитном РД рабочим телом является плазма любого вещества, ускоряемая за счёт силы Ампера в скрещенных электрическом и магнитном полях. Различают ЭРД с внешним и собственным магнитным полем. К первым относятся классические Е-Н ускорители плазмы и т. н. холловские ЭРД с замкнутым дрейфом электронов; во-вторых, магнитное поле создаётся током, протекающим в ускоряемой плазме; они подразделяются на импульсные и квазистационарные ЭРД. Рабочий цикл импульсного ЭРД соответствует периоду электрического пробоя РТ (обычно фторопласта), при котором создаётся плазма; начальный потенциал пробоя — несколько кв, удельный импульс 40—100 (кн ·сек )/кг, плотность тяги 10-9 —10-8н/м2, число циклов ЭРД достигает 1 млн. В квазистационарном ЭРД с целью создания сильного магнитного поля через РТ пропускается ток силой в десятки ка и напряжением в десятки в. Удельный импульс составляет 30—50 (кн ·сек )/кг, плотность тяги несколько кн/м2, время работы — десятки ч. О типах плазменных ЭРД и методах создания плазмы в них см. в ст. Плазменные ускорители .

  Ограниченное применение ЭРД связано с необходимостью большого расхода электроэнергии (10—100 квт на 1 н тяги). Из-за наличия бортовой энергоустановки (и др. вспомогательных систем), а также из-за малой плотности тяги аппарат с ЭРД имеет малое ускорение. Поэтому ЭРД могут быть использованы только в космических летательных аппаратах (КЛА), совершающих полёт либо в условиях слабых гравитационных полей, либо на околопланетных орбитах. Они применяются для ориентации, коррекции орбит КЛА и др. операций, не требующих больших затрат энергии. Электростатические, плазменные холловские и др. ЭРД рассматриваются как перспективные в качестве основных двигателей КЛА. Из-за малой отбрасываемой массы РТ время непрерывной работы таких ЭРД будет измеряться месяцами и годами; их использование вместо существующих химических РД позволит увеличить массу полезного груза КЛА.

  Идея использования электрической энергии для получения тяги выдвигалась ещё К. Э. Циолковским и другими пионерами космонавтики. В 1916—17 Р. Годдард (США) подтвердил опытами реальность этой идеи. В 1929—33 В. П. Глушко (СССР) создал экспериментальный ЭРД. В 1964 в СССР на КЛА типа «Зонд» испытаны плазменные импульсные РД, в 1966—71 на КЛА «Янтарь» — ионные РД, в 1972 на КЛА «Метеор» — плазменные квазистационарные РД. Различные типы ЭРД испытаны начиная с 1964 в США: в баллистическом, а затем в космическом полёте (на аппаратах АТС, СЕРТ-2 и др.). Работы в этой области ведутся также в Великобритании, Франции, ФРГ, Японии.

  Лит.: Корлисс У. Р., Ракетные двигатели для космических полетов, пер. с англ., М., 1962; Штулингер Э., Ионные двигатели для космических полетов, пер. с англ.. М., 1966; Гильзин К. А., Электрические межпланетные корабли, 2 изд., М., 1970; Гуров А. Ф., Севрук Д. Д., Сурнов Д. Н., Конструкция и расчет на прочность космических электроракетных двигателей, М., 1970; Фаворский О. Н., Фишгойт В, В., Янтовский Е. И., Основы теории космических электрореактивных двигательных установок, М., 1970; Гришин С. Д., Лесков Л. В., Козлов Н. П., Электрические ракетные двигатели, М., 1975.

  Ю. М. Трушин.

Рис. 3. Схема электростатического (ионного) двигателя: 1 — подвод рабочего тела; 2 — ионизатор; 3 — пучок ионов; 4 — фокусирующий электрод; 5 — ускоряющий электрод; 6 — замедляющий электрод; 7 — нейтрализатор; 8 — основной источник энергии; 9 — вспомогательный источник энергии.

Рис. 1. Схема электротермического двигателя с поверхностным нагревателем: 1 — подвод рабочего тела; 2 — камера нагрева и сопло (вольфрам); 3 — нагревающий элемент (вольфрамовая проволока): 4 — опора нагревающего элемента. Рис. 2. Схема электротермического двигателя с нагревом при помощи дугового разряда: 1 — подвод рабочего тела; 2 — катод (вольфрам); 3 — анод (вольфрам); 4 — сопло (вольфрам); 5 — резьбовая втулка.

Электрический сом

Электри'ческий сом (Malapterurus electricus), рыба подотряда сомовидных. Длина тела 20—65 см, иногда до 1 м. Спинного плавника нет, есть жировой; брюшные плавники на середине тела, грудные не имеют колючек. 3 пары усиков. Глаза маленькие, светятся в темноте. Жаберная щель очень узкая, нёбные зубы отсутствуют. Есть электрические органы . Э. с. малоподвижен, всеяден. Условия размножения плохо изучены. Обитает в Ниле и некоторых других реках тропической Африки. Разводится в аквариумах. Мясо Э. с. употребляют в пищу.

  Лит.: Жизнь животных, т. 4, ч. 1, М., 1971.

Рис. к ст. Электрический сом.

Электрический стул

Электри'ческий стул, специально оборудованное кресло для приведения в исполнение приговора о смертной казни путём использования электрического тока высокого напряжения. Применяется в 24 штатах США, а также на Филиппинах. В США казнь на Э. с. введена в 1889 как якобы «наиболее человечный и лёгкий способ казни». Впервые применена 6 августа 1890 в Обернской тюрьме штата Нью-Йорк. Утверждения о безболезненности и мгновенности наступления смерти, а тем самым и «гуманности» этого вида казни не соответствуют действительности.

Электрический ток

Электри'ческий ток, упорядоченное (направленное) движение электрически заряженных частиц или заряженных макроскопических тел. За направление тока принимают направление движения положительно заряженных частиц; если ток создаётся отрицательно заряженными частицами (например, электронами), то направление тока считают противоположным направлению движения частиц.

  Различают Э. т. проводимости, связанный с движением заряженных частиц относительно той или иной среды (т. е. внутри макроскопических тел), и конвекционный ток — движение макроскопических заряженных тел как целого (например, заряженных капель дождя).

  О наличии Э. т. в проводниках можно судить по тем действиям, которые он производит: нагреванию проводников, изменению их химического состава, созданию магнитного поля. Магнитное действие тока проявляется у всех без исключения проводников; в сверхпроводниках не происходит выделения теплоты, а химическое действие тока наблюдается преимущественно в электролитах . Магнитное поле порождается не только током проводимости или конвекционным током, но и переменным электрическим полем в диэлектриках и вакууме. Величину, пропорциональную скорости изменения электрического поля во времени, Дж. К. Максвелл назвал током смещения . Ток смещения входит в Максвелла уравнения на равных правах с током, обусловленным движением зарядов. Поэтому полный Э. т., равный сумме тока проводимости и тока смещения, может быть определён как величина, от которой зависит интенсивность магнитного поля.