Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ЭЛ) - Большая Советская Энциклопедия "БСЭ" - Страница 136
Функции sn z, cn z, dn z называют Э. ф. Якоби. Они связаны соотношением
sn2z + cn2 z = k2 sn2z + dn2z = 1.
На рис. представлен вид графиков Э. ф. Якоби. Они связаны соотношением
sn2z + cn2 z = k2 sn2z + dn2z = 1
На рис. представлен вид графиков Э. ф. Якоби для действительного x и 0 < k < 1; а
— полный нормальный эллиптический интеграл 1-го рода и 4K — основной период Э. ф. sn z. В отличие от однопериодической функции sin х, функция sn z — двоякопериодическая. Её второй основной период равен 2iK, где
и
— дополнительный модуль. Периоды, нули и полюсы Э. ф. Якоби приведены в таблице, где m и n — любые целые числа. Функции Периоды Нули Полюсы sn z 4Km + 2iK'n 2mK + 2iK'n }2mK + (2n + 1) iK' cn z 4K + (2K + 2iK' ) n (2m + 1) K + 2iK'n dn z 2Km + 4iK'n (2m + 1) K + (2n + 1) iKЭ. ф. Вейерштрасса Ã(х ) может быть определена как обратная нормальному эллиптическому интегралу Вейерштрасса 1-го рода
где параметры g2 и g2 — называются инвариантами Ã(x ). При этом предполагается, что нули e1 , e2 и e3 многочлена 4t3 — g2t — g3 различны между собой (в противном случае интеграл (*) выражался бы через элементарные функции). Э. ф. Вейерштрасса Ã(х ) связана с Э. ф. Якоби следующими соотношениями:
,,.Любая мероморфная двоякопериодическая функция f (z ) с периодами w1 и w2 , отношение которых мнимо, т. е. f (z + m w1 + п w2 ) = f (z ) при m , n = , ± 1, ±2,... и
, является Э. ф. Для построения Э. ф., а также численных расчётов применяют сигма-функции и тэта-функции .Изучению Э. ф. предшествовало накопление знаний об эллиптических интегралах, систематическое изложение теории которых дал А. Лежандр . Основоположниками теории Э. ф. являются Н. Абель (1827) и К. Якоби (1829). Последний дал развёрнутое изложение теории Э. ф., названное его именем. В 1847 Ж. Лиувилль опубликовал изложение основ общей теории Э. ф., рассматриваемых как мероморфные двоякопериодические функции. Представление Э. ф. через Ã-функцию, а также z-, s-функции дано К. Вейерштрассом в 40-х гг. 19 в. (две последние не являются Э. ф.).
Лит.: Маркушевич А. И., Теория аналитических функций, 2 изд., т. 2, М., 1968; Гурвиц А., Курант Р., Теория функций, пер. с нем., М., 1968; Уиттекер Э, Т., Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье, пер. с англ., М., 1967.
Рис. к ст. Эллиптические функции.
Эллиптический параболоид
Эллипти'ческий параболо'ид, один из двух видов параболоидов .
Эллиптический цилиндр
Эллипти'ческий цили'ндр, линейчатая цилиндрическая поверхность, уравнение которой может быть приведено к виду x2 /a2 + y2b2 = 1. См. Поверхности второго порядка .
Эллис (атоллы)
Э'ллис (Ellice) (с 1975 — Тувалу; Tuvalu), группа атоллов на З. Тихого океана, в Полинезии. Владение Великобритании. Площадь 24 км2. Население 5,8 тыс. человек (1973). Состоит из 9 низменных коралловых атоллов, вытянутых на 600 км. Плантации кокосовой пальмы, бананов. Экспорт копры. Административный центр — г. Фунафути.
Эллис Фред
Э'ллис (Ellis) Фред (5.6. 1886, Чикаго, — 10. 6. 1965, Нью-Йорк), американский график-карикатурист. С 1924 член компартии США. Учился в художественной школе в Чикаго (1905), с 1927 главный художник «Дейли уоркер», в 1930—36 работал в СССР для газет «Правда» и «Труд». В ясных, широких и живописных по манере рисунках Э. нашли страстное и лаконичное выражение темы обличения капитализма, призыв к борьбе рабочего класса, гневное осуждение фашизма.
Лит.: Дурус А., Фред Эллис, М. — Л., 1937; Выгодская Т., Фред Эллис, «Искусство», 1964, № 11.
Ф. Эллис. «Не беспокойтесь, здесь только коммунисты». Рисунок. 1934.
Эллора
Элло'ра, Эллур, Элура, деревня в Индии, в 15 км от Аурангабада (штат Махараштра), близ которой — группа из 34 высеченных в скале буддийских, брахманских и джайнских храмов (все — между 6—13 вв.), в том числе монолитный храм Кайласанатха, стилобат одной из трёх частей которого опоясан изваяниями слонов в натуральную величину.
Элляй
Элля'й (литературное имя; настоящее имя и фамилия Серафим Романович Кулачиков) [16(29). 11. 1904, Нижнеамгинский наслег Ботурусского улуса, ныне Алексеевского района Якутской АССР, — 14. 12. 1976, Якутск], якутский советский поэт. Народный поэт Якутской АССР (1964). Член КПСС с 1946. В 1928 окончил Московский институт журналистики. Участник Великой Отечественной войны 1941—45. Автор сборников стихов и поэм «Красные песни» (1925), «Счастливая жизнь» (1938), «Песни победы» (1950), «Негаснущий огонь» (1969), «Сердце друга» (1973) и др. Новизна формы, самобытность, гражданский пафос стихов Э. обусловили влияние его творчества на развитие якутской поэзии. Перевёл произведения А. С. Пушкина, Т. Г. Шевченко, В. В. Маяковского и др. Награжден орденом Октябрьской Революции, 2 другими орденами, а также медалями.
Соч.: Талыллыбыт айымньылар, т. 1—2, Якутскай, 1964—65; Талыллыбыт айымньылар, т. 1—2, Якутскай, 1974; в рус. пер. — Мой хомус, М., 1974.
Лит.: Очерк истории якутской советской литературы, М., 1970.
Элмайра
Элма'йра (Elmira), город на С.-В. США, в штате Нью-Йорк, на р. Шеманг (приток Саскуэханны). 36 тыс. жителей (1975), с пригородами 100 тыс. жителей Металлообрабатывающая и машиностроительная (производство пишущих и счётных машин, конторского и радиоэлектронного оборудования, противопожарной техники), химическая промышленность. Основан в 1788.
- Предыдущая
- 136/145
- Следующая
