Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Большая Советская Энциклопедия (ШР) - Большая Советская Энциклопедия "БСЭ" - Страница 2


2
Изменить размер шрифта:

Шредера уравнение

Шре'дера уравне'ние, математическое соотношение, выражающее связь между растворимостью кристаллического тела xt при температуре Т (в К), его теплотой плавления DН пл (в кал/моль ) и температурой плавления Т пл :

 

  где R — газовая постоянная; DН пл принимается постоянной в интервале Т пл — Т. Строгое применение Ш. у. ограничено идеальными растворами . Построив по Ш. у. кривые температурной зависимости растворимости для твёрдой фазы каждого из компонентов двойной системы, можно найти эвтектическую точку (см. Эвтектика ) и получить растворимости диаграмму .

  Ш. у. выведено в 1890 И. Ф. Шредером . Оно известно также под названием «логарифмики Шредера» и уравнения Шредера — Ле Шателье (А. Ле Шателье ранее получил зависимость растворимости от температуры в дифференциальной форме, на основании которой в 1894 вывел уравнение, аналогичное Ш. у.).

  Лит.: Кипнис А. Я., Развитие химической термодинамики в России, М.—Л., 1964. См. также лит. при ст. Растворы .

  М. Х. Карапетьянц.

Шрёдер-Девриент Вильгельмина

Шрёдер-Деврие'нт (Schröder-Devrient, урожд. Шрёдер) Вильгельмина (6.12.1804, Гамбург, — 26.1.1860, Кобург), немецкая певица (сопрано). Пению училась у Ю. Моцатти в Вене. В 1821 дебютировала в партии Памины («Волшебная флейта» Моцарта). Гастролировала в городах Италии, в Париже, Лондоне, Праге. Исполнила партию Леоноры («Фиделио» Бетховена, 1822, Вена), которая принесла ей славу выдающейся певицы Европы. В 1823—47 солистка придворной оперы в Дрездене. За участие в Дрезденском восстании 1849 была выслана из Саксонии и не выступала до 1856. Гастролировала в России. В искусстве Ш.-Д. сочеталось вокальное мастерство с большой драматической одарённостью. Среди лучших партий: Сента («Летучий голландец» Вагнера), Агата («Вольный стрелок» Вебера).

  Лит.: Серов А. Н., Критические статьи, т. 3, СПБ, 1893, с. 1361—75; Wolzogen Avon, Wilhelmine Schröder-Devrient, Lpz., 1863; Hagemann K., Wilhelmine Schröder-Devrient, Wiesbaden, 1947.

Шрёдингер Эрвин

Шрёдингер (Schrödinger) Эрвин (12.8.1887, Вена, — 4.1.1961, там же; похоронен в Альпбахе, Тироль), австрийский физик, один из создателей квантовой механики . Окончил Венский университет (1910). С 1911 работал в Физическом институте Венского университета. В 1920 профессор Высшей технической школы в Штутгарте, в 1921 — Высшей технической школы в Бреслау (Вроцлаве), в 1921—27 — Высшей технической школы в Цюрихе, с 1927 профессор Берлинского университета. В 1933—35 профессор Оксфордского университета, в 1936—38 — университета в Граце, в 1938—39 — в Генте, с 1940 профессор Королевской академии в Дублине, затем директор основанного им Института высших исследований. С 1956 профессор Венского университета. Основные труды по математической физике, теории относительности, физике атома и биофизике. К ранним работам Ш. относятся исследования по теории кристаллической решётки и создание в 1920 математической теории цвета, которая легла в основу современной колориметрии. Важнейшей заслугой Ш. является создание им волновой механики (конец 1925 — начало 1926): исходя из гипотезы Л. де Бройля о волнах материи, он показал, что стационарные состояния атомных систем могут рассматриваться как собственные колебания волнового поля, соответствующего данной системе; Ш. нашёл основное уравнение нерелятивистской квантовой механики (Шрёдингера уравнение ) и дал его решение для ряда частных задач, а также общий метод его применения в теории возмущений. Установил связь волновой механики с «матричной механикой» В. Гейзенберга, М. Борна и П. Йордана и доказал их физическую тождественность. Развитый Ш. математический формализм и введённая им волновая функция y явились наиболее адекватным математическим аппаратом квантовой механики и её применений. Нобелевская премия (1933). Иностранный член АН СССР (1934).

  Соч.: Abhandlungen zur Wellenmechanik, 2 Aufl., Lpz., 1928; в рус. пер. — Избр. труды по квантовой механике, М., 1976 (сер. «Классики науки»); Что такое жизнь? С точки зрения физика, 2 изд., М., 1972.

  Л. С. Полак.

Э. Шрёдингер.

Шрёдингера уравнение

Шрёдингера уравне'ние, основное динамическое уравнение нерелятивистской квантовой механики ; названо в честь австрийского физика Э. Шрёдингера , который предложил его в 1926. В квантовой механике Ш. у. играет такую же фундаментальную роль, как уравнение движения Ньютона в классической механике и Максвелла уравнения в классической теории электромагнетизма. Ш. у. описывает измерение во времени состояния квантовых объектов, характеризуемого волновой функцией . Если известна волновая функция y в начальный момент времени, то, решая Ш. у., можно найти y в любой последующий момент времени t.

  Для частицы массы т , движущейся под действием силы, порождаемой потенциалом V (х , у , z , t ), Ш. у. имеет вид:

 

, (1)

  где i =

,
 = 1,05. 10¾27 эрг . сек Планка постоянная
 — Лапласа оператор (х , у , z — координаты). Это уравнение называется временны'м Ш. у.

  Если потенциал V не зависит от времени, то решения Ш. у. можно представить в виде:

  y(х , у , z , t ) =

y (х , у , z ), (2)

  где Е — полная энергия квантовой системы, а y (x , у , z ) удовлетворяет стационарному Ш. у.:

 

 (3)

  Для квантовых систем, движение которых происходит в ограниченной области пространства, решения Ш. у. существуют только для некоторых дискретных значений энергии: E1 , E2 ,... , En ,...; члены этого ряда (в общем случае бесконечного) нумеруются набором целых квантовых чисел n. Каждому значению Еп соответствует волновая функция yn (x , у , z ), и знание полного набора этих функций позволяет вычислить все измеримые характеристики квантовой системы.

  В важном частном случае кулоновского потенциала

 

  (где е — элементарный электрический заряд) Ш. у. описывает атом водорода, и En представляют собой энергии стационарных состояний атома.