Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ТЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 149
В простейшем случае цикл может быть осуществлен при одном источнике теплоты с температурой T1, отдающем теплоту рабочему телу, и одном источнике теплоты с температурой T2, воспринимающем теплоту от рабочего тела. При этом в температурном интервале T1 — T2 наивысший кпд hк = 1 — T2/T1 среди всех возможных циклов имеет Карно цикл , то есть hк ht. Кпд, равный 1, то есть полное превращение теплоты Q1 в работу, возможен либо при T1 = ¥, либо при T2 = 0. Разумеется, оба эти условия нереализуемы. Важно ещё подчеркнуть, что для земных условий температура Т2 для теплоэнергетических установок должна в лучшем случае приниматься равной температуре Т окружающей среды (воздуха или водоёмов). Получить источник теплоты с температурой Т2 < Т можно лишь с помощью холодильной машины , которая для своего действия в общем случае требует затраты работы. Невозможность полного превращения теплоты в работу при условии, что все тела, участвующие в этих превращениях, будут возвращены в исходные состояния, устанавливается вторым началом термодинамики .
Процессы, протекающие в реальных установках, преобразующих теплоту в др. виды энергии, сопровождаются различными потерями, в результате чего получаемая действительная работа Адейств. оказывается меньше теоретически возможной работы Атеор . Отношение этих работ называется относительным эффективным кпд установки hoe , то есть,
. (2)Из формул (1) и (2) получаем Адейств = Q1 × ht hoe = Q1 he ,
где hе = hе ×hoe — эффективный кпд установки. При прочих равных условиях эффективность преобразования теплоты в работу зависит от температуры, при которой эта теплота передаётся рабочему телу. Максимальная работа, которая может быть получена за счёт некоторого количества теплоты Q , отбираемого при температуре T1 при заданной температуре среды Т, называется работоспособностью, или эксергией la этой теплоты, то есть
. (3)Из формулы (3), в частности, видим, что при T1= T эксергия теплоты равна нулю.
В наиболее полном варианте установки, преобразующие теплоту в механическую работу (теплосиловые установки), включают: рабочее тело, осуществляющее замкнутую последовательность термодинамических процессов (цикл); системы подвода теплоты к рабочему телу от какого-либо источника тепловой энергии; одну или несколько машин, воспринимающих работу рабочего тела или отдающих ему работу; систему отвода теплоты от рабочего тела в окружающую среду. По способу передачи теплоты к рабочему телу различают установки с внешним подводом (теплота подводится к рабочему телу от внешнего источника в теплообменнике) и установки с внутренним подводом (рабочее тело — продукты сгорания топлива).
Тепловые электростанции. Основу современной Т. (1975) составляют теплосиловые установки паротурбинных электростанций, которые состоят из котлоагрегата и паровой турбины (так называемые паросиловые установки ). В СССР на таких электростанциях в 1975 было выработано более 80% всей электроэнергии. В крупных городах чаще всего строятся теплофикационные электростанции (ТЭЦ), а в районах с дешёвым топливом — конденсационные электростанции (КЭС).
Отличие ТЭЦ от КЭС состоит в том, что ТЭЦ отдаёт потребителю не только электроэнергию, но и теплоту с сетевой водой, нагретой в бойлерах до 150—170 °С. Сетевая вода по магистральным теплопроводам подаётся в жилые массивы и далее либо непосредственно, либо через промежуточные теплообменники направляется на отопление и горячее водоснабжение. Турбины ТЭЦ помимо регенеративных отборов пара имеют один или несколько регулируемых теплофикационных отборов. Такая турбина работает по графику теплового потребления, и в наиболее холодное время года пропуск пара в конденсатор практически равен нулю. Отопление от ТЭЦ экономичнее, чем от индивидуальных и даже центральных котельных, так как на ТЭЦ сетевая вода подогревается отработавшим паром, температура (а значит, и эксергия) которого лишь немногим выше температуры сетевой воды. В котельных для повышения экономичности используется теплота при максимальной температуре горения топлива.
Упрощённая принципиальная схема конденсационной паротурбинной электростанции изображена на рис. В топке котлоагрегата сжигается топливо (уголь, мазут или природный газ). Необходимый для сгорания воздух, предварительно нагретый уходящими из котлоагрегата газами в рекуперативном воздухоподогревателе, подаётся в топку дутьевым вентилятором. Продукты сгорания отдают свою теплоту также воде и водяному пару в различных элементах котлоагрегата и с температурой 130—150 °С через золоуловитель поступают в дымосос, который выбрасывает их в дымовую трубу. Рабочее тело, преобразующее теплоту в механическую работу, — водяной пар. Перегретый водяной пар поступает из пароперегревателя и направляется в паровую турбину. Давление пара перед турбиной на крупных электростанциях достигает 35 Мн/м2 при температуре 650 °С. В турбине пар поступает через неподвижные сопла в каналы, образованные криволинейными лопатками, закрепленными по окружности ротора, и, отдавая свою энергию, приводит ротор во вращение. Механическая энергия ротора турбины преобразуется в электроэнергию в электромеханическом генераторе. Паровая турбина чаще всего выполняется в двух или трёх корпусах. Пар, поступающий из первого корпуса турбины во второй, иногда вновь направляется в парогенератор для промежуточного перегрева в пароперегревателе. Отработав в турбине, пар конденсируется в конденсаторе, в котором поддерживается давление 0,003—0,005 Мн/м2 и температура 25—29 °С. Полученный конденсат насосом подаётся в систему регенеративных подогревателей (где подогревается до 230—260 °С за счёт теплоты пара, отбираемого из турбины), а затем насосом — в экономайзер. После экономайзера вода поступает в барабан котла, а из него в размещенные на стенах топки экранные трубы, в которых происходит частичное испарение воды и из которых образовавшаяся пароводяная смесь возвращается в барабан, где насыщенный пар отделяется от воды и направляется в пароперегреватель и далее в турбину, а вода возвращается в экранные трубы. Для генерации пара сверхкритических параметров (давлением свыше 24 Мн/м2 ) используют прямоточные котлы .
Охлаждающая вода подаётся в конденсатор из естественных или искусственных водоёмов и, нагревшись в конденсаторе на несколько градусов, сбрасывается в этот же водоём. В конечном итоге температура охлаждающей воды возвращается к прежнему уровню за счёт испарения некоторой её части. При отсутствии достаточно больших водоёмов охлаждающая вода циркулирует в замкнутом контуре, отдавая теплоту воздуху в испарительных охладителях башенного типа — градирнях . В районах с недостатком воды применяют так называемые сухие градирни (градирни Геллерта), в которых охлаждающая вода отдаёт теплоту воздуху через стенку теплообменника.
Одна из основных тенденций развития тепловых электростанций — увеличение мощности единичных агрегатов (парогенераторов и паровых турбин), что позволяет быстрыми темпами наращивать энерговооружённость народного хозяйства. В СССР (1976) на КЭС осваиваются энергетические блоки мощностью 800 Мвт (сооружается блок мощностью 1200 Мвт ), а на ТЭЦ — 250 Мвт.
- Предыдущая
- 149/235
- Следующая
