Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Большая Советская Энциклопедия (ТЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 105


105
Изменить размер шрифта:

  Т. о., одной из основных задач Т. и. является нахождение аналитических формулировок законов механики, геометрии, физики, не зависящих от выбора координатной системы.

  1. Тензоры в прямоугольных координатах. Величины, которые в каждой системе прямоугольных координат задаются в 3-мерном пространстве 3k числами

  (ir = 1, 2, 3) и при замене системы координат (x1 , x2 , x3 ) системой (x’1 , x’2 , x’3 ) заменяются числами
 по формулам:

 

, (1)

где

, называются тензорными величинами, а определяющие их системы чисел — тензорами в прямоугольных координатах (иногда тензорами называют также и сами тензорные величины). Число k называется валентностью (рангом) тензора, числа
— его компонентам и (координатами). Аналогичным образом определяются тензоры в пространстве любого числа измерений.

  Примеры тензоров: если координаты вектора а обозначить ai (i = 1, 2, 3), то числа а , образуют тензор первой валентности. Любым двум векторам а = {ai } и b ={bi } соответствует тензор с компонентами pij = ai . bj . Этот тензор называется диадой. Если a (x1 , x2 , x3 ) некоторое векторное поле , то каждой точке этого поля соответствует тензор с компонентами

. Он называется производной вектора а = {ai} по вектору r {x1 , x2 , хз } (обозначается также через
). Упомянутая выше совокупность чисел Jij образует тензор второй валентности (тензор инерции).

  2. Тензоры второй валентности. В приложениях Т. и. к механике, кроме тензоров первой валентности (векторов), чаще всего встречаются тензоры второй валентности.

  Если pij = pji , то тензор называется симметрическим, а если pij = –pji , то — кососимметрическим (антисимметрическим). Симметрический тензор имеет шесть существенных компонент, а кососимметрический — три:

;
;
 
. При этом компоненты w1 , w2 , w3 преобразуются как компоненты псевдовектора (см. Осевой вектор ). Вообще псевдовекторы (угловую скорость, векторное произведение двух векторов и др.) можно рассматривать как кососимметрические тензоры второй валентности. Далее, если в любой системе координат принять
,
,
, то получится тензор, называемый единичным тензором. Компоненты этого тензора обозначаются при помощи Кронекера символа dij . Тензоры инерции, напряжения, единичный тензор — симметрические. Всякий тензор единственным образом разлагается на сумму симметрических и кососимметрических тензоров. Если а (r ) — вектор смещения частиц упругого тела при малой деформации, то симметрическая часть
 называется тензором деформации; кососимметрическая часть
 соответствует псевдовектору
 (см. Вихрь векторного поля).

Тензор

 является симметрическим только в том случае, когда поле а (r ) потенциально (см. Потенциальное поле ). Разложение тензора
 на симметрические и кососимметрические части соответствует разложению относительного смещения da на чистую деформацию и на поворот тела как целого.

  Инвариантами тензора называются функции от его компонент, не зависящие от выбора координатной системы. Примером инварианта является след тензора p11 + p22 + p33 . Так, для тензора инерции он равен удвоенному полярному моменту инерции относительно начала координат, для тензора

 —  дивергенции векторного поля a (r ) и т. д

  3. Тензоры в аффинных координатах. Для многих задач приходится рассматривать тензорные величины в аффинных координатах (косоугольных координатах с различными единицами длины по разным осям). Положение одной аффинной системы координат относительно другой может быть описано двумя различными системами чисел: числами

 равными компонентам векторов
. нового базиса относительно векторов
 старого базиса, и числами
, равными компонентам векторов
 относительно базиса
. В соответствии с этим бывают тензоры различного вида: в законы преобразования одних из них входят числа
, а в законы преобразования других — числа
. Встречаются и тензоры, в законы преобразования которых входят как числа
, так и числа
. Тензоры первого вида называются ковариантными, второго — контравариантными и третьего — смешанными тензорами. Более точно, (r + х )-валентным смешанным тензором s раз ковариантным и r раз контравариантным. называют совокупность 3r+s чисел
, заданную в каждой системе аффинных координат и преобразующуюся при переходе от одной системы координат к другой по формулам:

 

При рассмотрении прямоугольных координат не приходится различать ковариантные (нижние) и контравариантные (верхние) индексы тензора, так как для двух таких систем координат

.