Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ПО) - Большая Советская Энциклопедия "БСЭ" - Страница 381
f (x ) = 0 (1)
составляют ему равносильное х = j(х), обозначив, например, через j(x) разность х — kf (x ) (k — постоянное). Выбрав a0 — начальное приближение к корню уравнения, составляют последовательность чисел a , a1 = j(a ), a2 = j(a1 ), …, an = j(an-1 ), …; предел а =, если он существует, является корнем уравнения (1), а числа a , a1 , a2 ,..., an ,.. . — приближёнными значениями этого корня. Предел а будет существовать, например, если
(2)и в качестве начального приближения a взято любое число.
Обычно, когда надо найти приближённое значение корня уравнения, устанавливают достаточно узкий интервал, в котором лежит корень (например, с помощью графических методов); затем подбирают k так, чтобы условие (2) выполнялось на всём интервале; за начальное приближение a выбирают любое число из этого интервала и применяют П. п. м. Практически, после того как два последовательных приближения an-1 и an совпадут с заданной степенью точности, вычисление прекращают и полагают an » а. Пусть дано, например, уравнение f (x ) =. Так как
, то корень уравнения лежит в интервале . Положив , непосредственной проверкой убеждаемся, что для k = условие (2) выполняется на всём интервале . Выбирем a0 = и применим П. п. м. к уравнению . Получим a1 = 0,554, a2 = 0,570, a3 = 0,566 (на самом деле корень уравнения с тремя верными десятичными знаками равен a4 » 0,567).2) П. п. м. применяют для приближённого решения систем линейных алгебраических уравнений с большим числом неизвестных.
Пусть дана система трёх уравнений с тремя неизвестными:
(3)Строят ей эквивалентную систему:
(4)полагая, например,
и, пользуясь рекуррентными формулами:
xj = c11 xj-1 + c12 yj-1 + c13 zj-1 + d1
yj = c21 xj-1 + c22 yj-1 + c23 zj-1 + d2
zj = c31 xj-1 + c32 yj-1 + c33 zj-1 + d3
составляют последовательность (x , у , z ), (x1 , у1 , z1 ),..., (xn , yn , zn ),... Если xn ® a, yn ® b, zn ® g при неограниченном увеличении n, то тройка чисел х = a, у = b, z = g будет решением системы (3). Пределы a, b, g заведомо существуют, каковы бы ни были начальные приближения x , у , z , если, например, в каждом уравнении системы (4) сумма абсолютных величин коэффициентов cij меньше единицы.
3) Для того чтобы найти решение у = у (х ) дифференциального уравнения
, удовлетворяющее условию у0 = у (х ), записывают это уравнение в видеи, пользуясь рекуррентной формулой
составляют последовательность функций y1 (x ), у2 (х ), ..., yn (x ),... Если она равномерно сходится, то предел её будет искомым решением.
4) Чтобы найти решение первой краевой задачи для уравнения
выбирают произвольную дважды дифференцируемую функцию u (x, у ) и составляют затем линейное уравнение
.Пусть u1 (х, у ) — решение первой краевой задачи для уравнения (5); считая u1 первым приближением, составляют уравнения типа (5) для последующих приближений. Полученная последовательность {un (x, у )} при некоторых предположениях сходится и даёт решение задачи.
О применимости П. п. м. см. статью Сжатых отображений принцип .
Послезародышевое развитие
Послезаро'дышевое разви'тие, то же, что постэмбриональное развитие .
Послеледниковая эпоха
Послеледнико'вая эпо'ха, то же, что голоцен .
Послелог
Послело'г, разряд служебных слов , соответствующих по значению предлогу , но занимающих постпозитивное положение (после того слова, к которому относятся). П. распространены в угро-финских, тюркских, монгольских, кавказских, тунгусо-маньчжурских и др. языках, например: в татарском тавлар арасында — «между гор» (ара-сында — «между»), в чувашском шыв урла — «через реку» (урла — «через»), в венгерском a talla mellett — «около доски» (mellett — «около»). Некоторые П. могут принимать падежное окончание, например: в языке коми пу вылын — «на дереве» (местный падеж), пу вылысь — «с дерева» (исходный падеж), пу выло — «на дереве» (направительный падеж). В некоторых случаях П. употребляются и как имена существительные с самостоятельным значением, например: в татарском языке ара — «промежуток» и арасында — «между», в удмуртском языке выдан — «на» и выл — «поверхность».
Послеродовой период
Послеродово'й пери'од, начинается с момента рождения плаценты и продолжается 6—8 нед. В П. п. в организме родильницы почти все изменения в системах и органах, возникшие при беременности и родах, подвергаются обратному развитию (инволюции). Матка, дно которой после родов находится на 15 см над лоном, сокращается и к 10—12-м сут исчезает за лоном; масса её с 1000 г к концу 8-й нед доходит до 50—60 г. Внутренний зев шейки матки закрывается к 10-м сут после родов, наружный — к концу 3-й нед. Одновременно с сокращением матки происходит восстановление её слизистой оболочки, которая начинает постепенно покрывать внутреннюю поверхность матки; полное восстановление эпителиального покрова завершается к концу 3-й нед после родов. До завершения этого процесса внутренняя поверхность матки представляет собой обширную раневую поверхность с характерным отделяемым (лохии), которое постепенно к 10-му дню из кровянистого становится светлым, без примеси крови. В П. п. восстанавливается тонус влагалища, заживают ссадины и разрывы в области наружных половых органов, влагалища и шейки матки. Постепенно укорачиваются перерастянутые связки матки, маточные трубы и яичники приобретают обычное состояние. На 3—4-е сут после родов начинается лактация .
- Предыдущая
- 381/448
- Следующая
