Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ПА) - Большая Советская Энциклопедия "БСЭ" - Страница 167
Лит.: Горелик Г. С., Колебания и волны, 2 изд., М., 1959, гл. Ill, §9; Мандельштам Л. И., Полн. собр. трудов, т. 4, М., 1955 (Лекции по колебаниям, ч. 1, лекции 18—19).
С. М. Хайкин.
Рис. 1. а — параметрическое возбуждение колебаний струны; б — вынужденное колебание струны.
Рис. 2. а — устройство маятника с переменной длиной подвеса; б — схема движения тела маятника за один период.
Рис. 3. Области, в которых возможно параметрическое возбуждение колебаний.
Параметрическое представление
Параметри'ческое представле'ние функции, выражение функциональной зависимости между несколькими переменными посредством вспомогательных переменных параметров . В случае двух переменных х и у зависимость между ними F (х , у ) = 0 может быть геометрически истолкована как уравнение некоторой плоской кривой. Любую величину t , определяющую положение точки (х , у ) на этой кривой (например, длину дуги, отсчитываемой со знаком + или — от некоторой точки кривой, принятой за начало отсчёта, или момент времени в некотором заданном движении точки, описывающей кривую), можно принять за параметр, в функции которого выразятся х и у :
x = j(t ), у = y(t ). (*)
Последние функции и дадут П. п. функциональной зависимости между х и у , уравнения (*) называют параметрическими уравнениями соответствующей кривой. Так, для случая зависимости x 2 + y 2 = 1 имеем П. п. х= cos t , у = sin t (0 ? t < 2p) (параметрические уравнения окружности); для случая зависимости х 2 —у 2 = 1 имеем П. п.
; (t ¹ 0) или также х = cosec t , y=ctg t (— p< t < p, t ¹ 0) (параметрические уравнения гиперболы). Если параметр t можно выбрать так, что функции (*) рациональны, то кривую называют уникурсальной (см. Уникурсальная кривая ); такой является, например, гипербола. Особенно важно П. п. пространственных кривых, т. е. задание их уравнениями вида: х = j(t ), у = y (t ), z = c (t ). Так, прямая в пространстве допускает П. п. х = а + mt ; у = b + nt ; z = с + pt , винтовая линия — П. п. х = a cos t ; у = a sin t ; z = ct .Для случая трёх переменных х , у и z , связанных зависимостью F (x , y , z ) = 0 (одну из них, например z, можно рассматривать как неявную функцию двух других), геометрическим образом служит поверхность. Чтобы определить положение точки на ней, нужны два параметра u и u (например, широта и долгота на поверхности шара), так что П. п. имеет вид: х = j(u, u), у = y (u, u); z = c (u , u). Например, для зависимости x 2 + y 2 = (z 2 +1 )2 имеем П. п. х = (u 2 —1 ) cos u; у = (u 2 + 1) sinu; z = u . Важнейшими преимуществами П. п. являются: 1) то, что они дают возможность изучать неявные функции и в тех случаях, когда переход к их явному заданию без посредства параметров затруднителен; 2) то, что здесь удаётся выражать многозначные функции посредством однозначных. Вопросы П. п. изучены особенно хорошо для аналитических функций. П. п. аналитических функций посредством однозначных аналитических функций составляет предмет теории униформизации .
Параметрон
Параметро'н, элемент автоматики и вычислительной техники, принцип действия которого основан на особенностях параметрического возбуждения и усиления электрических колебаний . Простейший П. представляет собой колебательный контур, настроенный на частоту f . При периодическом изменении под воздействием сигнала накачки с частотой fн , равной примерно 2f , одного из энергоёмких параметров контура в нём возникает колебание с частотой
, когерентное по отношению к возбуждающему колебанию. При этом фаза возбуждённых в П. колебаний может принимать одно из двух отличающихся на 180° значений, условно обозначаемых (0, p), и сколь угодно долго находиться в этом состоянии. Эта способность П. выбирать одну из двух стабильных фаз называется свойством квантования фазы. П. как логический элемент или ячейка запоминающего устройства был запатентован в 1954 Э. Гото (Япония). На основе П. созданы счётчики, регистры, сумматоры, запоминающие устройства и системы управления ЭВМ.По типу нелинейного элемента различают индуктивные П. (с ферритовыми сердечниками, магнитной плёнкой), ёмкостные П. (на параметрических полупроводниковых диодах, сегнетоэлектрических конденсаторах) и резистивные П. (на туннельных и др. полупроводниковых диодах с вольтамперной характеристикой, имеющей падающий участок). Скорость (тактовая частота f т ) переключения П. пропорциональна частоте накачки и меньше её примерно в 20—50 раз. Наиболее надёжными и дешёвыми являются одноконтурные индуктивные (на ферритовых сердечниках) П. с потребляемой мощностью 15—50 мвт , f т ? 100 кгц ; более экономичные (3— 6 мвт ) ёмкостные П. на конденсаторах имеют более высокое быстродействие (f т » 5 Мгц ); ещё больше быстродействие резистивных П., т.к. продолжительность процесса установления колебаний в них соизмерима с периодом собственных колебаний контура. В индуктивных П. на тонких магнитных плёнках или в ёмкостных П. на полупроводниковых диодах тактовая частота достигает 150 Мгц . В связи с разработкой параметрических усилителей и генераторов света появляется принципиальная возможность перехода к частотам оптического диапазона, что должно привести к существенному повышению быстродействия П.
Лит.: Параметроны. [Сб. ст.], пер. с япон., кн. 1—2, М., 1961—62; Параметроны в цифровых устройствах, М., 1968; Вишневецкий А. И., Немецкий Г. М., Параметроны и их применение в устройствах связи, М., 1968.
В. И. Медведев.
- Предыдущая
- 167/293
- Следующая
