Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ОТ) - Большая Советская Энциклопедия "БСЭ" - Страница 35
Свойства бинарных О. Пусть R = <х , у >. Если для любого х верно xRx , то R называется рефлексивным (примеры: О. равенства чисел — каждое число равно самому себе, подобие треугольников и т.п.). Если для любого х xRy не имеет места (символически: ù xRy ), то R называется антирефлексивным, или иррефлексивным (например, О. перпендикулярности прямых — никакая прямая не перпендикулярна самой себе). Если для любых не равных между собой х и у одно из них находится в отношении R к другому (т. е. выполнено одно из трёх соотношений xRy , х = у или yRx ), то R называется связанным (например, О. <). Если для любых х и у из xRy следует yRx , то R называется симметричным (например, О. равенства = или О. неравенства ¹). Если для любых х и у из xRy и xR–1y следует х = у (т. е. R и R–1 выполняются одновременно лишь для равных между собой членов), то R называется антисимметричным (например, О. £ и ³ для любых объектов). Если для любых х и у из xRy следует ù xRy , то R называется асимметричным (таковы, например, О. < и >, поскольку никакой объект не больше и не меньше себя). Если для любых х , у и z из xRy и yRz следует xRz , то R называется транзитивным (таковы, например, О. = или <, но не ¹). Можно было бы определить и др. свойства бинарных О., но нетрудно показать, что уже через эти свойства посредством логических операций определяются все прочие.
Типы отношений. Значительная часть приводимых ниже типов О. уже встречалась выше в примерах. Сочетание свойств рефлексивности, симметричности и транзитивности приводит нас к важнейшему типу О. — это О. типа равенства (тождества , эквивалентности ). Нетрудно показать, что любое такое О. индуцирует (определяет) разбиение множества, на котором оно определено, на непересекающиеся классы — т. н. классы эквивалентности: элементы, связанные данным О., попадают в общий класс, не связанные — в различные. Т. о., элементы, попавшие в общий класс, в известном смысле неразличимы, что и определяет важность этого типа О.
Лит.: Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960; Уемов А. И., Вещи, свойства и отношения, М., 1963; Шрейдер Ю. А., Равенство, сходство, порядок, М., 1971.
Ю. Л. Гастев.
Ото...
Ото... (от греч. ús, род. падеж ōtós — ухо), часть сложных слов, указывающая на их отношение к уху, болезням уха (например, оториноларинголог, отосклероз).
Отображение
Отображе'ние (матем.) множества А в множество В , соответствие, в силу которого каждому элементу х множества А соответствует определённый элемент у = f (x ) множества В , называют образом элемента х (элемент х называют прообразом элемента у ). Иногда под О. понимают установление такого соответствия. Примерами О. могут служить параллельное проектирование одной плоскости на другую, стереографическая проекция сферы на плоскость. Географическая карта может рассматриваться как результат О. точек земной поверхности (или части её) на точки куска плоскости. Логически понятие «О.» совпадает с понятиями функция , оператор , преобразование . Как средство исследования О. даёт возможность заменять изучение соотношений между элементами множества А изучением соотношений между элементами множества В , что в ряде случаев может оказаться проще. Так, параллельным проектированием можно отобразить параллелограмм в квадрат, центральным проектированием – любую линию второго порядка в окружность и т.д. Многие свойства остаются неизменными (инвариантными) при О. Так, при параллельном проектировании сохраняется параллельность прямых, отношение отрезков длин параллельных прямых и т.д.
Если каждый элемент множества В является образом элемента множества А , то О. называется отображением А на множество В . Если каждый элемент из В имеет один и только один прообраз, то О. называется взаимно однозначным. О. называется непрерывным, если близкие элементы множества А переходят в близкие элементы множества В . Точнее это означает, что если элементы x1 , x2 ,..., хп ,... сходятся к x , то элементы f (x1 ), f (x2 ),..., f (хn ),... сходятся к f (x ).
Каждой части Т множества А соответствует часть f (T ) множества В , состоящая из образов точек этой части; она называется образом Т . Если все точки части Q множества В являются образами точек из А , то совокупность всех точек х из А таких, что f (x ) лежит в Q , называются полным прообразом Q и обозначается f –1 (Q ). При взаимно однозначном О. полный прообраз каждого элемента множества В состоит из одного элемента множества А .
Взаимно однозначное О. имеет обратное О., сопоставляющее элементу у из В его прообраз f –1 (y ). Взаимно однозначное О. называется топологическим, или гомеоморфным, если как оно, так и обратное ему О. непрерывны. При гомеоморфных О. сохраняются лишь наиболее общие свойства фигур, как, например, связность,, ориентируемость, размерность и др. Так, квадрат и круг гомеоморфны, но квадрат и куб не гомеоморфны. Свойства фигур, не изменяющиеся при гомеоморфных О., изучаются в топологии. Если в множествах А и В имеются некоторые соотношения и если эти соотношения сохраняются при О., то О. называется изоморфным относительно этих соотношений (см. Изоморфизм ).
В математическом анализе большую роль играют О. одного множества функций на другое. Например, дифференцирование может рассматриваться как О., при котором функции f (x ) соответствует функция f ’I (x ). Среди таких О. наиболее простыми являются О., при которых сумма функций переходит в сумму, а при умножении функции на число образ её умножается на то же число. Такие О. называются линейными, их изучают в функциональном анализе . См. также Линейное преобразование , Операторов теория .
В ряде случаев в множествах А и В можно ввести координаты, т. е. задавать каждую точку этих множеств системой чисел (x1 ,..., хп ) и (y1 ,..., уп ). Тогда О. задаётся системой функций ук = fk (x1 ,..., xn ). 1 £ k £ m . В большинстве встречающихся на практике случаев функции f1 , f2 ,..., fm дифференцируемые: тогда О. называется дифференцируемым. Если О. дифференцируемо, m= n и якобиан О. отличен от нуля, то О. взаимно однозначно.
Дифференцируемые О. поверхностей на поверхности изучаются в дифференциальной геометрии. Имеются свойства, общие всем дифференциально-геометрическим О. Например, на поверхности S всегда можно указать такую ортогональную сеть (см. Сети линий ), которой на поверхности S ’ соответствует также ортогональная сеть. Эта теорема имеет важное значение в картографии.
Наиболее важны следующие классы О. поверхностей. Изометрическое отображение, которое характеризуется тем, что всякая дуга, лежащая на S , имеет ту же длину, что и образ этой дуги на S ’. При таких О. сохраняются площади фигур, а также углы между двумя направлениями, выходящими из одной точки (подробнее см. Дифференциальная геометрия , Изгибание ). Конформное отображение, при котором сохраняются углы между всякими двумя направлениями, выходящими из одной точки (см. Конформное отображение ). Примером может служить стереографическая проекция. Сферическое отображение поверхности S на сферу S состоит в том, что каждой точке М поверхности S ставится в соответствие такая точка М ’ сферы S, чтобы нормали к S и S, проведённые соответственно в точках М и М ’ были параллельны. Более общим является О. двух произвольных поверхностей по параллельности нормалей. Геодезическое отображение поверхностей, при котором любой геодезической линии на поверхности S соответствует на S ’ линия также геодезическая. Геодезическая О. поверхности постоянной отрицательной кривизны на часть плоскости имеет большое значение для истолкования геометрии Лобачевского. Эквиареальное отображение поверхности на поверхность, при котором площади соответствующих друг другу фигур равны.
- Предыдущая
- 35/58
- Следующая
