Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (НЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 68
P = cE + cE2 + JE3 + …. (2)
Коэффициенты c, J и т.д. называются нелинейными восприимчивостями (по порядку величины c ~ 1/Еa ; J ~ 1/Ea2 ). Материальное уравнение (2) является основой Н. о. Если на поверхность среды падает монохроматическая световая волна Е = А cos (wt — kx ), где А — амплитуда, w — частота, k — волновое число , х — координата точки вдоль направления распространения волны, t — время, то, согласно (2), поляризация среды наряду с линейным членом P (л) = cA cos (wt — kx ) (линейная поляризация) содержит еще и нелинейный член второго порядка:
Последнее слагаемое в (3) описывает поляризацию, изменяющуюся с частотой 2w, т. е. генерацию 2-й гармоники. Генерация 3-й гармоники, а также зависимость показателя преломления от интенсивности описываются членом JE3 в (2) и т.д.
Нелинейный отклик атомного осциллятора на сильное световое поле — наиболее универсальная причина нелинейных оптических эффектов. Существуют, однако, и др. причины: например, изменение показателя преломления n может быть вызвано нагревом среды лазерным излучением . Изменение температуры DT = aE2 (a — коэффициент поглощения света) приводит к тому, что
Во многих случаях существенным оказывается также эффект электрострикции (сжатие среды в световом поле Е ). В сильном световом поле Е лазера электрострикционное давление, пропорциональное E2 , изменяет плотность среды, что может привести к генерации звуковых волн. С тепловыми эффектами и электрострикцией иногда связана самофокусировка света.
Оптические гармоники . На рис. 1 показано, как интенсивное монохроматическое излучение лазера на неодимовом стекле (l1 = 1,06 мкм ), проходя через оптически прозрачный кристалл ниобата бария, преобразуется в излучение с длиной волны ровно вдвое меньшей, т. е. во 2-ю гармонику (l2 = 0,53 мкм ). При некоторых условиях во 2-ю гармонику переходит более 60% энергии падающего излучения. Удвоение частоты наблюдается для излучения др. лазеров видимого и инфракрасного диапазонов. В ряде кристаллов и жидкостей зарегистрировано утроение частоты света — 3-я гармоника. Более сложные эффекты возникают, если в среде распространяются две или несколько интенсивных волн с различающимися частотами, например w1 и w2 . Тогда наряду с гармониками каждой из волн (2w1 , 2w2 и т.п.) возникают волны комбинационных частот (w1 + w2 ; w1 — w2 и т.п.).
Описанное явление, называется генерацией оптических гармоник, имеет много общего с широко известным умножением частоты в нелинейных элементах радиоустройств. Вместе с тем есть и существенное различие: в оптике эти эффекты являются результатом взаимодействия не колебаний, а волн. В сильном световом поле, согласно (2), каждый атомный осциллятор переизлучает не только на частоте падающей волны, но и на её гармониках. Однако так как свет распространяется в среде, размеры L которой существенно превышают длину волны l (для видимого света l~ 10-4 см ), суммарный эффект генерации гармоник на выходе зависит от фазовых соотношений между основной волной и гармониками внутри среды; возникает своеобразная интерференция, способная либо усилить, либо ослабить эффект. Оказалось, что взаимодействие двух волн, различающихся частотами, например w и 2w, максимально, а, следовательно, максимальна и перекачка энергии от основной волны к гармоникам, если их фазовые скорости равны (условие фазового синхронизма). К условиям фазового синхронизма можно прийти и из квантовых соображений, они соответствуют закону сохранения импульса при слиянии или распаде фотонов. Для трёх волн условия синхронизма: k3 = k1 + k2 , где k1 , k2 и k3 — импульсы фотонов (в единицах Планка постоянной ).
Условия синхронизма основной волны и гармоник в реальной диспергирующей среде на первый взгляд кажутся неосуществимыми. Равенство фазовых скоростей волн на разных частотах имеет место лишь в среде без дисперсии. Однако оказалось, что отсутствие дисперсии можно имитировать, используя взаимодействие волн разной поляризации в анизотропной среде (рис. 1 ). Этот метод резко повысил эффективность нелинейных волновых взаимодействий. Если в 1961 кпд оптических удвоителей частоты составлял ~10-10 —10-12, то в 1963 он достиг значения 0,2—0,3, а к 1973 приблизился к 0,8.
Оптические умножители частоты позволили существенно расширить область применения лазеров. Эффект генерации оптических гармоник широко используется для преобразования излучения длинноволновых лазеров в излучение коротковолновых диапазонов. Промышленность многих стран выпускает оптические умножители частоты на неодимовом стекле или на алюмоиттриевом гранате с примесью неодима (l = 1,06 мкм ), позволяющие получить мощное когерентное излучение на волнах l = 0,53 мкм (2-я гармоника), l = 0,35 мкм (3-я гармоника) и l = 0,26 мкм (4-я гармоника). Для этой цели были подобраны кристаллы, обладающие высокой нелинейностью (большими значениями c) и позволяющие удовлетворить условиям фазового синхронизма. Иллюстрациями современных возможностей в этой области являются генератор 5-й оптической гармоники (рис. 2 ) и получение 9-й гармоники излучения неодимового лазера (l9 = 1189
). В 1972 было экспериментально осуществлено умножение частоты в области вакуумного ультрафиолета; в качестве нелинейной среды здесь использовались некоторые газы и пары металлов.Самофокусировка света. Самовоздействия. При достаточно большой (но вполне умеренной для современной лазерной техники) мощности светового пучка, превышающей некоторое критическое значение Ркр , в среде вместо обычной дифракционной расходимости первоначально параллельного пучка наблюдается его самосжатие (рис. 3 ). Величина Ркр различна для разных сред; для ряда органических жидкостей Ркр ~ 10—50 квт, в некоторых кристаллах и оптических стеклах Ркр не превышает нескольких вт.
Иногда, например, при распространении излучения мощных импульсных лазеров в жидкостях, это самосжатие носит характер «схлопывания» пучка, которое сопровождается настолько быстрым нарастанием светового поля, что это может вызвать световой пробой (см. Лазерное излучение ), фазовые переходы и др. изменения состояния вещества. В др. случаях, например при распространении излучения газовых лазеров непрерывного действия в стеклах, нарастание поля также заметно, хотя и не является столь быстрым. Самосжатие в некотором смысле похоже на фокусировку пучка обычной линзой. Однако существенные различия наблюдаются за фокальной точкой; самосфокусированный пучок может образовывать квазистационарные нити («волноводное» распространение), последовательность фокальных точек и т.п.
Явление самофокусировки обусловлено тем, что в сильном световом поле изменяется показатель преломления среды (в опыте, изображенном на рис. 3 , это происходит за счёт нагрева стекла лазерным излучением). Если знак изменения показателя преломления таков, что в области, занятой пучком, он возрастает, эта область становится оптически более плотной, и периферийные лучи отклоняются к центру пучка. На рис. 2 изображены фазовые фронты и ход лучей в ограниченном пучке, распространяющемся в среде, с показателем преломления: n = n + n2 E2 , где n — постоянная составляющая, не зависящая от Е, n2 > 0. Поскольку фазовая скорость света v = c/n = с/ (n + n2 E2 ), то фазовые фронты изгибаются (поле Е на оси больше, чем на периферии) и лучи отклоняются к оси пучка. Такая нелинейная рефракция может быть столь существенной (её «сила» нарастает вместе с концентрацией поля), что практически полностью подавляет дифракционные эффекты.
- Предыдущая
- 68/192
- Следующая
